(Translated by https://www.hiragana.jp/)
Sesquilinear form - Wikipedia Jump to content

Sesquilinear form

From Wikipedia, the free encyclopedia

In mathematics, a sesquilinear form is a generalization of a bilinear form that, in turn, is a generalization of the concept of the dot product of Euclidean space. A bilinear form is linear in each of its arguments, but a sesquilinear form allows one of the arguments to be "twisted" in a semilinear manner, thus the name; which originates from the Latin numerical prefix sesqui- meaning "one and a half". The basic concept of the dot product – producing a scalar from a pair of vectors – can be generalized by allowing a broader range of scalar values and, perhaps simultaneously, by widening the definition of a vector.

A motivating special case is a sesquilinear form on a complex vector space, V. This is a map V × VC that is linear in one argument and "twists" the linearity of the other argument by complex conjugation (referred to as being antilinear in the other argument). This case arises naturally in mathematical physics applications. Another important case allows the scalars to come from any field and the twist is provided by a field automorphism.

An application in projective geometry requires that the scalars come from a division ring (skew field), K, and this means that the "vectors" should be replaced by elements of a K-module. In a very general setting, sesquilinear forms can be defined over R-modules for arbitrary rings R.

Informal introduction

[edit]

Sesquilinear forms abstract and generalize the basic notion of a Hermitian form on complex vector space. Hermitian forms are commonly seen in physics, as the inner product on a complex Hilbert space. In such cases, the standard Hermitian form on Cn is given by

where denotes the complex conjugate of This product may be generalized to situations where one is not working with an orthonormal basis for Cn, or even any basis at all. By inserting an extra factor of into the product, one obtains the skew-Hermitian form, defined more precisely, below. There is no particular reason to restrict the definition to the complex numbers; it can be defined for arbitrary rings carrying an antiautomorphism, informally understood to be a generalized concept of "complex conjugation" for the ring.

Convention

[edit]

Conventions differ as to which argument should be linear. In the commutative case, we shall take the first to be linear, as is common in the mathematical literature, except in the section devoted to sesquilinear forms on complex vector spaces. There we use the other convention and take the first argument to be conjugate-linear (i.e. antilinear) and the second to be linear. This is the convention used mostly by physicists[1] and originates in Dirac's bra–ket notation in quantum mechanics. It is also consistent with the definition of the usual (Euclidean) product of as .

In the more general noncommutative setting, with right modules we take the second argument to be linear and with left modules we take the first argument to be linear.

Complex vector spaces

[edit]
Assumption: In this section, sesquilinear forms are antilinear in their first argument and linear in their second.

Over a complex vector space a map is sesquilinear if

for all and all Here, is the complex conjugate of a scalar

A complex sesquilinear form can also be viewed as a complex bilinear map where is the complex conjugate vector space to By the universal property of tensor products these are in one-to-one correspondence with complex linear maps

For a fixed the map is a linear functional on (i.e. an element of the dual space ). Likewise, the map is a conjugate-linear functional on

Given any complex sesquilinear form on we can define a second complex sesquilinear form via the conjugate transpose: In general, and will be different. If they are the same then is said to be Hermitian. If they are negatives of one another, then is said to be skew-Hermitian. Every sesquilinear form can be written as a sum of a Hermitian form and a skew-Hermitian form.

Matrix representation

[edit]

If is a finite-dimensional complex vector space, then relative to any basis of a sesquilinear form is represented by a matrix and given by where is the conjugate transpose. The components of the matrix are given by

Hermitian form

[edit]
The term Hermitian form may also refer to a different concept than that explained below: it may refer to a certain differential form on a Hermitian manifold.

A complex Hermitian form (also called a symmetric sesquilinear form), is a sesquilinear form such that The standard Hermitian form on is given (again, using the "physics" convention of linearity in the second and conjugate linearity in the first variable) by More generally, the inner product on any complex Hilbert space is a Hermitian form.

A minus sign is introduced in the Hermitian form to define the group SU(1,1).

A vector space with a Hermitian form is called a Hermitian space.

The matrix representation of a complex Hermitian form is a Hermitian matrix.

A complex Hermitian form applied to a single vector is always a real number. One can show that a complex sesquilinear form is Hermitian if and only if the associated quadratic form is real for all

Skew-Hermitian form

[edit]

A complex skew-Hermitian form (also called an antisymmetric sesquilinear form), is a complex sesquilinear form such that Every complex skew-Hermitian form can be written as the imaginary unit times a Hermitian form.

The matrix representation of a complex skew-Hermitian form is a skew-Hermitian matrix.

A complex skew-Hermitian form applied to a single vector is always a purely imaginary number.

Over a division ring

[edit]

This section applies unchanged when the division ring K is commutative. More specific terminology then also applies: the division ring is a field, the anti-automorphism is also an automorphism, and the right module is a vector space. The following applies to a left module with suitable reordering of expressions.

Definition

[edit]

A σしぐま-sesquilinear form over a right K-module M is a bi-additive map φふぁい : M × MK with an associated anti-automorphism σしぐま of a division ring K such that, for all x, y in M and all αあるふぁ, βべーた in K,

The associated anti-automorphism σしぐま for any nonzero sesquilinear form φふぁい is uniquely determined by φふぁい.

Orthogonality

[edit]

Given a sesquilinear form φふぁい over a module M and a subspace (submodule) W of M, the orthogonal complement of W with respect to φふぁい is

Similarly, xM is orthogonal to yM with respect to φふぁい, written xφふぁい y (or simply xy if φふぁい can be inferred from the context), when φふぁい(x, y) = 0. This relation need not be symmetric, i.e. xy does not imply yx (but see § Reflexivity below).

Reflexivity

[edit]

A sesquilinear form φふぁい is reflexive if, for all x, y in M,

implies

That is, a sesquilinear form is reflexive precisely when the derived orthogonality relation is symmetric.

Hermitian variations

[edit]

A σしぐま-sesquilinear form φふぁい is called (σしぐま, εいぷしろん)-Hermitian if there exists εいぷしろん in K such that, for all x, y in M,

If εいぷしろん = 1, the form is called σしぐま-Hermitian, and if εいぷしろん = −1, it is called σしぐま-anti-Hermitian. (When σしぐま is implied, respectively simply Hermitian or anti-Hermitian.)

For a nonzero (σしぐま, εいぷしろん)-Hermitian form, it follows that for all αあるふぁ in K,

It also follows that φふぁい(x, x) is a fixed point of the map αあるふぁσしぐま(αあるふぁ)εいぷしろん. The fixed points of this map form a subgroup of the additive group of K.

A (σしぐま, εいぷしろん)-Hermitian form is reflexive, and every reflexive σしぐま-sesquilinear form is (σしぐま, εいぷしろん)-Hermitian for some εいぷしろん.[2][3][4][5]

In the special case that σしぐま is the identity map (i.e., σしぐま = id), K is commutative, φふぁい is a bilinear form and εいぷしろん2 = 1. Then for εいぷしろん = 1 the bilinear form is called symmetric, and for εいぷしろん = −1 is called skew-symmetric.[6]

Example

[edit]

Let V be the three dimensional vector space over the finite field F = GF(q2), where q is a prime power. With respect to the standard basis we can write x = (x1, x2, x3) and y = (y1, y2, y3) and define the map φふぁい by:

The map σしぐま : ttq is an involutory automorphism of F. The map φふぁい is then a σしぐま-sesquilinear form. The matrix Mφふぁい associated to this form is the identity matrix. This is a Hermitian form.

In projective geometry

[edit]
Assumption: In this section, sesquilinear forms are antilinear (resp. linear) in their second (resp. first) argument.

In a projective geometry G, a permutation δでるた of the subspaces that inverts inclusion, i.e.

STTδでるたSδでるた for all subspaces S, T of G,

is called a correlation. A result of Birkhoff and von Neumann (1936)[7] shows that the correlations of desarguesian projective geometries correspond to the nondegenerate sesquilinear forms on the underlying vector space.[5] A sesquilinear form φふぁい is nondegenerate if φふぁい(x, y) = 0 for all y in V (if and) only if x = 0.

To achieve full generality of this statement, and since every desarguesian projective geometry may be coordinatized by a division ring, Reinhold Baer extended the definition of a sesquilinear form to a division ring, which requires replacing vector spaces by R-modules.[8] (In the geometric literature these are still referred to as either left or right vector spaces over skewfields.)[9]

Over arbitrary rings

[edit]

The specialization of the above section to skewfields was a consequence of the application to projective geometry, and not intrinsic to the nature of sesquilinear forms. Only the minor modifications needed to take into account the non-commutativity of multiplication are required to generalize the arbitrary field version of the definition to arbitrary rings.

Let R be a ring, V an R-module and σしぐま an antiautomorphism of R.

A map φふぁい : V × VR is σしぐま-sesquilinear if

for all x, y, z, w in V and all c, d in R.

An element x is orthogonal to another element y with respect to the sesquilinear form φふぁい (written xy) if φふぁい(x, y) = 0. This relation need not be symmetric, i.e. xy does not imply yx.

A sesquilinear form φふぁい : V × VR is reflexive (or orthosymmetric) if φふぁい(x, y) = 0 implies φふぁい(y, x) = 0 for all x, y in V.

A sesquilinear form φふぁい : V × VR is Hermitian if there exists σしぐま such that[10]: 325 

for all x, y in V. A Hermitian form is necessarily reflexive, and if it is nonzero, the associated antiautomorphism σしぐま is an involution (i.e. of order 2).

Since for an antiautomorphism σしぐま we have σしぐま(st) = σしぐま(t)σしぐま(s) for all s, t in R, if σしぐま = id, then R must be commutative and φふぁい is a bilinear form. In particular, if, in this case, R is a skewfield, then R is a field and V is a vector space with a bilinear form.

An antiautomorphism σしぐま : RR can also be viewed as an isomorphism RRop, where Rop is the opposite ring of R, which has the same underlying set and the same addition, but whose multiplication operation () is defined by ab = ba, where the product on the right is the product in R. It follows from this that a right (left) R-module V can be turned into a left (right) Rop-module, Vo.[11] Thus, the sesquilinear form φふぁい : V × VR can be viewed as a bilinear form φふぁい′ : V × VoR.

See also

[edit]

Notes

[edit]
  1. ^ footnote 1 in Anthony Knapp Basic Algebra (2007) pg. 255
  2. ^ "Combinatorics", Proceedings of the NATO Advanced Study Institute, Held at Nijenrode Castle, Breukelen, the Netherlands, 8–20 July 1974, D. Reidel: 456–457, 1975[1]
  3. ^ Sesquilinear form at the Encyclopedia of Mathematics
  4. ^ Simeon Ball (2015), Finite Geometry and Combinatorial Applications, Cambridge University Press, p. 28[2]
  5. ^ a b Dembowski 1968, p. 42
  6. ^ When char K = 2, skew-symmetric and symmetric bilinear forms coincide since then 1 = −1. In all cases, alternating bilinear forms are a subset of skew-symmetric bilinear forms, and need not be considered separately.
  7. ^ Birkhoff, G.; von Neumann, J. (1936), "The logic of quantum mechanics", Annals of Mathematics, 37 (4): 823–843, doi:10.2307/1968621, JSTOR 1968621
  8. ^ Baer, Reinhold (2005) [1952], Linear Algebra and Projective Geometry, Dover, ISBN 978-0-486-44565-6
  9. ^ Baer's terminology gives a third way to refer to these ideas, so he must be read with caution.
  10. ^ Faure, Claude-Alain; Frölicher, Alfred (2000), Modern Projective Geometry, Kluwer Academic Publishers
  11. ^ Jacobson 2009, p. 164

References

[edit]
[edit]