(Translated by https://www.hiragana.jp/)
Groupe symétrique — Wikipédia Aller au contenu

Groupe symétrique

Un article de Wikipédia, l'encyclopédie libre.

En mathématiques, plus particulièrement en algèbre, le groupe symétrique d'un ensemble E est le groupe des permutations de E, c'est-à-dire des bijections de E sur lui-même. N'est traité dans le présent article, à la suite de la définition générale, que le cas E fini.

Définition

[modifier | modifier le code]

Soit E un ensemble. On appelle groupe symétrique de E l'ensemble des applications bijectives de E sur E muni de la composition d'applications (la loi ∘). On le note S(E) ou (ce caractère est un S gothique rappelant le rôle fondamental joué par les mathématiciens allemands dans le développement de l'algèbre entre 1850 et 1933[1]).

Un cas particulier courant est le cas où E est l'ensemble fini {1, 2, … , n}, n étant un entier naturel ; on note alors ou Sn[2] le groupe symétrique de cet ensemble. Les éléments de sont appelés permutations et est appelé groupe des permutations de degré n ou groupe symétrique d'indice n (un sous-groupe du groupe symétrique est appelé un groupe de permutations).

Si deux ensembles sont équipotents alors leurs groupes symétriques sont isomorphes. En effet, si f est une bijection de E dans F, alors l'application de S(E) dans S(F) qui à σしぐま associe fσしぐまf−1 est un isomorphisme. En particulier si E est un ensemble fini à n éléments, alors est isomorphe à . En conséquence, il suffit de connaître les propriétés du groupe pour en déduire celles du groupe . C'est pourquoi la suite de cet article ne portera que sur .

Triangle équilatéral et ses médianes

Les six isométries du groupe de symétrie d'un triangle équilatéral ABC sont les trois symétries par rapport aux médianes , et issues de respectivement les sommets A, B et C, deux rotations d'un tiers de tour dans le sens horaire ou anti-horaire et l'application identité. Elles se restreignent en six permutations des trois sommets, constituant le groupe S({A, B, C}) :

id, x = (B C), y = (A C), z = (A B), r = (A B C) et r−1 = (C B A).

La table de Cayley de ce groupe est :

id r r−1 x y z
id id r r−1 x y z
r r r−1 id z x y
r−1 r−1 id r y z x
x x y z id r r−1
y y z x r−1 id r
z z x y r r−1 id

Origine et importance

[modifier | modifier le code]

Historiquement, l'étude du groupe des permutations des racines d'un polynôme par Évariste Galois est à l'origine du concept de groupe.

Un théorème de Cayley assure que tout groupe est isomorphe à un sous-groupe d'un groupe symétrique.

Propriétés

[modifier | modifier le code]

Le groupe est d'ordre n![3].

Générateurs du groupe symétrique

[modifier | modifier le code]

Une transposition est un 2-cycle, c'est-à-dire une permutation qui échange deux éléments et laisse les autres inchangés. On note (i, j) la transposition qui échange l'élément i avec l'élément j.

Il existe un algorithme permettant de décomposer une permutation en produit de transpositions. Ainsi l'ensemble des transpositions forme un système de générateurs de .

On peut se limiter aux transpositions de la forme τたうi = (i, i + 1) puisque, pour i < j, il est possible de décomposer

Ces n – 1 générateurs permettent de donner une présentation du groupe symétrique, avec les n(n + 1)/2 relations[4] :

Il s'agit donc d'un cas particulier de groupe de Coxeter et même d'un groupe de réflexions (en) (ce qui, pour un groupe fini, est en fait équivalent).

Il est possible également de prendre n – 1 générateurs — les transpositions si = (i, n) pour i < n — et (n – 1)2 relations[5] :

Enfin, on peut se contenter de 2 générateurs — la transposition τたう1 = (1, 2) et le cycle r = (1, 2, … , n) — et n + 1 relations[6] :

On suppose dans cette section que l'entier n est supérieur ou égal à 2.

Toute permutation se décompose en un produit de transpositions. Ce produit n'est pas unique, mais la parité du nombre de termes d'un tel produit ne dépend que de la permutation. On parle alors de permutation paire ou impaire.

La signature d'une permutation σしぐま, notée sgn(σしぐま) ou εいぷしろん(σしぐま), est définie par :

L'application signature est un morphisme de groupes de dans ({–1, 1}, ×). Le noyau de ce morphisme, c’est-à-dire l'ensemble des permutations paires, est appelé le groupe alterné de degré n, noté (ce caractère est un A gothique). est donc un sous-groupe normal de et le groupe quotient est isomorphe à l'image {–1, 1} du morphisme signature. Par conséquent, est d'indice 2 dans , donc d'ordre n!/2. (Ou plus concrètement : et son complémentaire dans sont de même cardinal car pour t transposition de , l'application σしぐまtσしぐま est une bijection de dans son complémentaire.)

De plus, la suite exacte courte

est scindée à droite, donc est un produit semi-direct de par le groupe cyclique à deux éléments.

Classes de conjugaison

[modifier | modifier le code]

La classe de conjugaison d'une permutation σしぐま est l'ensemble de ses conjuguées :

Les conjuguées de σしぐま sont les permutations dont la décomposition en produit de cycles à supports disjoints a la même structure que celle de σしぐま : même nombre de cycles de chaque longueur[7].

Exemple
Si l'on considère dans les différentes classes de conjugaison, on trouve celle de l'identité, des transpositions (ab), les permutations composées de deux transpositions de supports disjoints (ab)(cd), les cycles d'ordre 3 (abc), les permutations composées d'un cycle d'ordre 3 et d'un d'ordre 2 : (abc)(de), puis les cycles d'ordres 4 : (abcd) et 5 : (abcde).
Les permutations (1 2 3)(4 5) et (1 3 4)(2 5) sont dans la même classe de conjugaison contrairement à la permutation (1 3)(2 5).

Le nombre de classes de conjugaison est donc égal au nombre de « partages » de l'entier n, et si la décomposition d'une permutation contient k1 « 1-cycles » (les points fixes), k2 2-cycles, … , km m-cycles, alors le nombre de ses conjuguées vaut[8] :

(On voit apparaître un coefficient multinomial.)

Propriétés issues de l'étude du groupe alterné

[modifier | modifier le code]

Le résultat fondamental dans l'étude du groupe alterné est que celui-ci est un groupe simple pour n différent de 4.

D'autre part, le groupe dérivé de est [9]. Pour n ≥ 5, c'est là le seul sous-groupe distingué propre de .

est résoluble si et seulement si n ≤ 4, ce qui a d'importantes conséquences sur la résolubilité par radicaux des équations polynomiales.

Propriétés diverses

[modifier | modifier le code]
  • Si n > 4, n'a aucun sous-groupe d'indice strictement compris entre 2 et n[10].
  • Tout sous-groupe d'indice n de est isomorphe à [11]. Si n est différent de 6, un tel sous-groupe est forcément le stabilisateur d'un élément de {1, … , n}.
  • En revanche, possède un sous-groupe d'indice 6 transitif donc sans point fixe[12].
  • est complet pour tout n différent de 2 et de 6. En effet :
  • se plonge dans , mais pas dans si n ≥ 2[15].

Notes et références

[modifier | modifier le code]
  1. Bertrand Hauchecorne, Biographie des grands théorèmes, Ellipses, , p. 90
  2. R. Goblot, Algèbre linéaire, Paris, 2005, p. 58, utilise la notation Sn. Les auteurs anglo-saxons écrivent en général SE plutôt que et Sn plutôt que .
  3. La preuve standard figure dans « Permutation#Dénombrement des permutations ».
  4. (en) H. S. M. Coxeter et W. O. J. Moser (de), Generators and Relations for Discrete Groups, Springer, (réimpr. 2013), 3e éd. (1re éd. 1957), 164 p. (ISBN 978-3-662-21946-1, lire en ligne), p. 63 (6.22).
  5. Coxeter et Moser 1972, p. 64 (6.28).
  6. Coxeter et Moser 1972, p. 63 (6.21).
  7. Démontré par exemple dans ce paragraphe de la leçon « Théorie des groupes » sur Wikiversité.
  8. (en) William Fulton et Joe Harris, Representation Theory : A First Course [détail des éditions], p. 55, aperçu sur Google Livres.
  9. P. Tauvel, Algèbre, 2e édition, Paris, Dunod, 2010, p. 70. Voir aussi la dernière démonstration du § Groupe dérivé sur Wikiversité.
  10. (en) G. A. Miller (en), H. F. Blichfeldt (en) et L. E. Dickson, Theory and Applications of Finite Groups, Applewood Books (en), (1re éd. 1916) (lire en ligne), p. 166-167.
  11. Démontré par exemple dans cet exercice de la leçon « Théorie des groupes » sur Wikiversité.
  12. Voir par exemple (en) Robert A. Wilson, The Finite Simple Groups, coll. « GTM » (no 251), (lire en ligne), p. 19, ou cet exercice de la leçon « Théorie des groupes » sur Wikiversité.
  13. Voir par exemple Wilson 2009, p. 18-19, ou les exercices corrigés 12 et 13 de cette page de la leçon « Théorie des groupes » sur Wikiversité.
  14. Wilson 2009, p. 19.
  15. (en) Joseph J. Rotman (en), An Introduction to the Theory of Groups [détail des éditions], p. 23, exercice 2.8.

Sur les autres projets Wikimedia :

Articles connexes

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]

Daniel Perrin, Cours d'algèbre [détail des éditions]