(Translated by https://www.hiragana.jp/)
Théorème des zéros de Hilbert — Wikipédia Aller au contenu

Théorème des zéros de Hilbert

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis Lemme de Zariski)

Le théorème des zéros de Hilbert, parfois appelé Nullstellensatz, est un théorème d'algèbre commutative qui est à la base du lien entre les idéaux et les variétés algébriques. Il a été démontré par le mathématicien allemand David Hilbert.

Une algèbre de type fini sur K est un anneau quotient d'un anneau de polynômes K[X1,…,Xn] par un idéal. Sa structure de K-algèbre est induite par celle de K[X1,…,Xn]. Il existe plusieurs formulations du théorème des zéros de Hilbert.

Théorème 1 (Lemme de Zariski[1]). Soient K un corps et A une K-algèbre de type fini. Alors tout quotient de A par un idéal maximal est une extension finie de K.

De façon équivalente : si A est un corps, alors c'est une extension finie de K.

Ce théorème a plusieurs conséquences immédiates.

On note Spm A le spectre maximal d'un anneau A, c.-à-d. l'ensemble des idéaux maximaux de A.

Théorème 2 (Nullstellensatz faible). Supposons que est algébriquement clos. Alors la fonction

est une bijection, où désigne l'idéal engendré par les .

Autrement dit, un point de s'identifie avec un idéal maximal de polynômes à indéterminées sur quand est algébriquement clos.

Théorème 3 (Existence des zéros). Si K est un corps algébriquement clos, alors pour tout idéal propre de K[X1,…,Xn], il existe un point de Kn racine de tout élément de .

Ce résultat n'est pas vrai si K n'est pas algébriquement clos. L'idéal M des multiples de X2 + 1 est maximal dans ℝ[X] puisque le quotient de ℝ[X] par M est un corps isomorphe à ℂ, pourtant le polynôme n'admet pas de racine dans ℝ.

Théorème 4. Soit un idéal d'une algèbre de type fini A sur K. Alors le radical I de est égal à l'intersection des idéaux maximaux de A contenant .

Si est un polynôme appartenant à K[X1,…,Xn], les zéros de dans Kn sont les points tels que .

Corollaire (Nullstellensatz fort). Supposons K algébriquement clos. Soient un idéal de K[X1,…,Xn] et l'ensemble des zéros communs des polynômes de . Si est un polynôme dans K[X1,…,Xn] qui s'annule sur , alors une puissance de appartient à .

Le théorème 2 sur la structure des idéaux maximaux est faux sur un corps non algébriquement clos (même en une variable). Cependant, la propriété plus faible suivante subsiste :

  • Tout idéal maximal de K[X1,…,Xn] (K non nécessairement clos) est engendré par polynômes.

Par la théorie de la dimension de Krull, on sait qu'aucun idéal maximal de K[X1,…,Xn] ne peut être engendré par strictement moins que éléments.

Une forme particulière du théorème des zéros est le théorème d'existence des zéros (th. 3 ci-dessus) qui, par contraposée, peut se reformuler ainsi :

  • Soit K un corps algébriquement clos, soient des polynômes sans zéros communs. Alors il existe vérifiant l'identité de Bézout

L'astuce de Rabinowitsch (en)[3] montre que ce cas particulier du Nullstellensatz fort implique le cas général. En effet si, dans K[X1,…,Xn], est l'idéal engendré par et est un polynôme qui s'annule sur , on considère l'idéal de K[X0,X1,…,Xn] engendré par et par le polynôme . Cet idéal n'a pas de zéros communs dans Kn+1. Donc il existe tels que l'on ait

En remplaçant dans cette identité par , et en multipliant les deux côtés par une puissance convenable de , on voit que cette puissance de appartient à . De plus, on peut majorer par le maximum des degrés totaux de .

Notes et références

[modifier | modifier le code]
  1. (en) Oscar Zariski, « A new proof of Hilbert's Nullstellensatz », Bull. Amer. Math. Soc., vol. 53, no 4,‎ , p. 362-368 (lire en ligne), Hn
    3
    , p. 363-364.
  2. (en) M. F. Atiyah et I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, (lire en ligne), chap. 5, exercice 18, reproduit cette preuve due à Zariski, et en donne deux autres (corollaire 5.24 et proposition 7.9).
  3. (de) J. L. Rabinowitsch, « Zum Hilbertschen Nullstellensatz », Math. Ann., vol. 102,‎ , p. 520 (lire en ligne)

Articles connexes

[modifier | modifier le code]

Lien externe

[modifier | modifier le code]

(en) Florian Enescu, « Commutative Algebra — Lecture 13 », sur Georgia State University