(Translated by https://www.hiragana.jp/)
GitHub - carboniferio/carbonifer: Control carbon emission of your cloud infrastructure - Carbon-aware cloud infra
Skip to content

carboniferio/carbonifer

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

87 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Go Go Reference

Carbonifer Logo

https://carbonifer.io/

Command Line Tool to control carbon emission of your cloud infrastructure. Reading Terraform files, carbonifer plan will estimate future Carbon Emissions of infrastructure and help make the right choices to reduce Carbon footprint.

Scope

This tool currently estimates usage emissions, not embodied emissions (manufacturing, transport, recycling...). It is not a full LCA (Life Cycle Assessment) tool.

This tool can analyze Infrastructure as Code definitions such as:

It can estimate Carbon Emissions of:

  • Google Cloud Platform
    • Compute Engine
      • Compute Instances (generic and custom machine types, and from template)
      • Disks (boot, persistent and region-persistent, HDD or SSD)
      • Machines with GPUs
      • Cloud SQL
      • Instance Group (including regional and Autoscaler)
      • Google Kubernetes Engine (GKE) cluster
  • Amazon Web Services
    • EC2 (including inline root, elastic, and ephemeral block storages)
    • EBS Volumes
    • RDS
    • AutoScaling Group

The following will also be supported soon:

  • Amazon Web Services
    • Elastic Kubernetes Service (EKS)
    • Elastic Container Service (ECS)
  • Azure
    • Virtual Machines
    • Virtual Machine Scale Set
    • SQL

NB: This list of resources will be extended in the future A list of supported resource types is available in the Scope document.

Install Carbonifer CLI

Magic one-liner bash script

Using bash and curl. By default, it will install the latest version to /usr/local/bin:

curl -sfL https://raw.githubusercontent.com/carboniferio/carbonifer/main/install.sh | sudo bash

if you need more flexibility

export DEST_DIR=/path/to/dest/dir
export VERSION=v1.2.3
curl -sSL https://github.com/username/repo/install.sh | bash

Go install

If you have go installed, you can use:

go install github.com/carboniferio/carbonifer@latest

Go will automatically install it in your $GOPATH/bin directory which should be in your $PATH.

Docker alternative

Alternatively, you can use the Docker image:

git clone https://github.com/carboniferio/carbonifer.git
cd carbonifer
docker build -t carbonifer .
docker run -it --rm -v <your_tf_folder_with_config>:/tmp/ carbonifer ./carbonifer --config=/tmp/config.yaml plan /tmp/

Manual install

Download the latest release from releases page

Plan

carbonifer plan will read your Terraform folder and estimates Carbon Emissions.

$ carbonifer plan

 Average estimation of CO2 emissions per instance: 

 ------------------------------------------- ------- ---------- ------------------------ 
  resource                                    count   replicas   emissions per instance  
 ------------------------------------------- ------- ---------- ------------------------ 
  google_compute_disk.first                   1       1           0.0422 gCO2eq/h        
  google_compute_instance.first               1       1           33.5977 gCO2eq/h       
  google_compute_instance.second              1       1           0.4248 gCO2eq/h        
  google_compute_region_disk.regional-first   1       2           0.0844 gCO2eq/h        
  google_sql_database_instance.instance       1       2           2.0550 gCO2eq/h        
  google_compute_subnetwork.first                                unsupported             
  google_compute_network.vpc_network                             unsupported             
 ------------------------------------------- ------- ---------- ------------------------ 
  Total                                       7                   38.3433 gCO2eq/h       
 ------------------------------------------- ------- ---------- ------------------------ 

In case instances are in a managed group (GCP managed instance group, AWS autoscaling group...), the instances appear in the group name, with a count > 1 and emissions are shown for 1 instance. Of course, Total will sum all instances of the group:

 --------------------------------------- ------------------ ------- ------------------------ 
  resource type                           name               count   emissions per instance  
 --------------------------------------- ------------------ ------- ------------------------ 
  google_compute_instance_group_manager   my-group-manager   3        0.5568 gCO2eq/h        
  google_compute_network                  vpc_network                unsupported             
  google_compute_subnetwork               first                      unsupported             
 --------------------------------------- ------------------ ------- ------------------------ 
                                          Total              3        1.6704 gCO2eq/h        
 --------------------------------------- ------------------ ------- ------------------------ 

The report is customizable (text or JSON, per hour, month...), cf Configuration

Example of a JSON report

{
  "Info": {
    "UnitTime": "h",
    "UnitWattTime": "Wh",
    "UnitCarbonEmissionsTime": "gCO2eq/h",
    "DateTime": "2023-02-18T14:52:08.757999+01:00",
    "AverageCPUUsage": 0.5,
    "AverageGPUUsage": 0.5
  },
  "Resources": [
    {
      "Resource": {
        "Identification": {
          "Name": "first",
          "ResourceType": "google_compute_disk",
          "Provider": 2,
          "Region": "europe-west9",
          "Count": 1
        },
        "Specs": {
          "GpuTypes": null,
          "HddStorage": "1024",
          "SsdStorage": "0",
          "MemoryMb": 0,
          "VCPUs": 0,
          "ReplicationFactor": 1
        }
      },
      "PowerPerInstance": "0.76096",
      "CarbonEmissionsPerInstance": "0.04489664",
      "AverageCPUUsage": "0.5",
      "Count": "1"
    },
    {
      "Resource": {
        "Identification": {
          "Name": "first",
          "ResourceType": "google_compute_instance",
          "Provider": 2,
          "Region": "europe-west9",
          "Count": 1
        },
        "Specs": {
          "GpuTypes": [
            "nvidia-tesla-a100",
            "nvidia-tesla-k80",
            "nvidia-tesla-k80"
          ],
          "HddStorage": "0",
          "SsdStorage": "1317",
          "MemoryMb": 87040,
          "VCPUs": 12,
          "CPUType": "",
          "ReplicationFactor": 1
        }
      },
      "PowerPerInstance": "733.5648917187",
      "CarbonEmissionsPerInstance": "43.2803286114",
      "AverageCPUUsage": "0.5",
      "Count": "1"
    },
    {
      "Resource": {
        "Identification": {
          "Name": "second",
          "ResourceType": "google_compute_instance",
          "Provider": 2,
          "Region": "europe-west9",
          "Count": 1
        },
        "Specs": {
          "GpuTypes": null,
          "HddStorage": "10",
          "SsdStorage": "0",
          "MemoryMb": 4098,
          "VCPUs": 2,
          "CPUType": "",
          "ReplicationFactor": 1
        }
      },
      "PowerPerInstance": "7.6091047343",
      "CarbonEmissionsPerInstance": "0.4489371793",
      "AverageCPUUsage": "0.5",
      "Count": "1"
    },
    {
      "Resource": {
        "Identification": {
          "Name": "regional-first",
          "ResourceType": "google_compute_region_disk",
          "Provider": 2,
          "Region": "europe-west9",
          "Count": 1
        },
        "Specs": {
          "GpuTypes": null,
          "HddStorage": "1024",
          "SsdStorage": "0",
          "MemoryMb": 0,
          "VCPUs": 0,
          "CPUType": "",
          "ReplicationFactor": 2
        }
      },
      "PowerPerInstance": "1.52192",
      "CarbonEmissionsPerInstance": "0.08979328",
      "AverageCPUUsage": "0.5",
      "Count": "1"
    },
    {
      "Resource": {
        "Identification": {
          "Name": "instance",
          "ResourceType": "google_sql_database_instance",
          "Provider": 2,
          "Region": "europe-west9",
          "Count": 1
        },
        "Specs": {
          "GpuTypes": null,
          "HddStorage": "0",
          "SsdStorage": "10",
          "MemoryMb": 15360,
          "VCPUs": 4,
          "CPUType": "",
          "ReplicationFactor": 2
        }
      },
      "PowerPerInstance": "36.807506875",
      "CarbonEmissionsPerInstance": "2.1716429056",
      "AverageCPUUsage": "0.5",
      "Count": "1"
    }
  ],
  "UnsupportedResources": [
    {
      "Identification": {
        "Name": "vpc_network",
        "ResourceType": "google_compute_network",
        "Provider": 2,
        "Region": "",
        "Count": 1
      }
    },
    {
      "Identification": {
        "Name": "first",
        "ResourceType": "google_compute_subnetwork",
        "Provider": 2,
        "Region": "europe-west9",
        "Count": 1
      }
    }
  ],
  "Total": {
    "Power": "780.264383328",
    "CarbonEmissions": "46.0355986163",
    "ResourcesCount": "5"
  }
}

Existing terraform plan file

In case you want to read an existing terraform file, you need to pass it as argument. It can either be a raw tfplan or a json plan. This is useful when some variables or credentials are required to run terraform plan. In that case carbonifer plan won't try to run terraform plan for you, and won't expect to have any credentials or variable set (via env var...)

carbonifer plan /path/to/my/project.tfplan

Methodology

This tool will:

  1. Read resources from Terraform folder
  2. Calculate an estimation of power used by those resources in Watt per Hour
  3. Translate this electrical power into an estimation of Carbon Emissions depending on

We can estimate the Carbon Emissions of a resource by taking the electric use of a resource (in Watt-hour) and multiplying it by a carbon emission factor. This carbon emission factor depends on:

  • Cloud Provider
  • Region of the Data Center
  • The energy mix of this region/country
    • Average
    • (future) real-time

Those calculations and estimations are detailed in the Methodology document.

Limitations

We are currently supporting only

  • resources with a significative power usage (basically anything that has CPU, GPU, memory or disk)
  • resources that can be estimated beforehand (we discard for now data transfer)

Because this is just an estimation, the actual power usage and carbon emission should probably differ depending on the actual usage of the resource (CPU %), and actual grid energy mix (could be weather dependent), ... But that should be enough to make decisions about the choice of provider/region, instance type...

See the Scope document for more details.

Usage

carbonifer plan [target]

  • target can be
    • a terraform project folder
    • a terraform plan file (json or raw)
    • default: the current folder

Prerequisites

  • Terraform :
    • Carbonifer uses Terraform:
      • terrafom executable available in $PATH
      • if not existing, it installs it in a temp folder (.carbonifer)
    • versions supported
  • Cloud provider credentials (optional):
    • if not provided, if terraform does not need it, it won't fail
    • if terraform needs it (to read disk image info...), it will get credentials the same way terraform gets its credentials

Configuration

Yaml key CLI flag Default Description
unit.time h Time unit: h (hour), m (month), y (year)
unit.power w Power unit: W (watt) or kW
unit.carbon g Carbon emission in g (gram) or kg
out.format -f <format> --format=<format> text text or json
out.file -o <filename> --output=<filename> file to write report to. Default is standard output.
data.path <arg> path of carbonifer data files (coefficents...). Default uses embedded files in binary
avg_cpu_use 0.5 planned average percentage of CPU used
log warn level of logs info, debug, warn, error

Extending Carbonifer

In order to add support for a new terraform resource type, there is a mapping mechanism where we can declare JQ filters to query the Terraform file and extract the necessary information.