(Translated by https://www.hiragana.jp/)
Factor models with local factors — Determining the number of relevant factors
IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v229y2022i1p80-102.html
   My bibliography  Save this article

Factor models with local factors — Determining the number of relevant factors

Author

Listed:
  • Freyaldenhoven, Simon

Abstract

We extend the theory on factor models by incorporating “local” factors into the model. Local factors affect only an unknown subset of the observed variables. This implies a continuum of eigenvalues of the covariance matrix, as is commonly observed in applications. We derive which factors are pervasive enough to be economically important and which factors are pervasive enough to be estimable using the common principal component estimator. We then introduce a new class of estimators to determine the number of those relevant factors. Unlike existing estimators, our estimators use not only the eigenvalues of the covariance matrix, but also its eigenvectors. We find that incorporating partial sums of the eigenvectors into our estimators leads to significant gains in performance in simulations.

Suggested Citation

  • Freyaldenhoven, Simon, 2022. "Factor models with local factors — Determining the number of relevant factors," Journal of Econometrics, Elsevier, vol. 229(1), pages 80-102.
  • Handle: RePEc:eee:econom:v:229:y:2022:i:1:p:80-102
    DOI: 10.1016/j.jeconom.2021.04.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621001275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.04.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Shukla, Ravi & Trzcinka, Charles, 1990. "Sequential Tests of the Arbitrage Pricing Theory: A Comparison of Principal Components and Maximum Likelihood Factors," Journal of Finance, American Finance Association, vol. 45(5), pages 1541-1564, December.
    2. Xu Han & Mehmet Caner, 2017. "Determining the number of factors with potentially strong within-block correlations in error terms," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 946-969, October.
    3. Andrew T. Foerster & Pierre-Daniel G. Sarte & Mark W. Watson, 2011. "Sectoral versus Aggregate Shocks: A Structural Factor Analysis of Industrial Production," Journal of Political Economy, University of Chicago Press, vol. 119(1), pages 1-38.
    4. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2016. "Exponent of Cross‐Sectional Dependence: Estimation and Inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(6), pages 929-960, September.
    5. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    6. Trzcinka, Charles A, 1986. "On the Number of Factors in the Arbitrage Pricing Model," Journal of Finance, American Finance Association, vol. 41(2), pages 347-368, June.
    7. George Kapetanios, 2004. "A New Method for Determining the Number of Factors in Factor Models with Large Datasets," Working Papers 525, Queen Mary University of London, School of Economics and Finance.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    10. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    11. Daron Acemoglu & Vasco M. Carvalho & Asuman Ozdaglar & Alireza Tahbaz‐Salehi, 2012. "The Network Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 80(5), pages 1977-2016, September.
    12. Connor, Gregory & Korajczyk, Robert A, 1993. "A Test for the Number of Factors in an Approximate Factor Model," Journal of Finance, American Finance Association, vol. 48(4), pages 1263-1291, September.
    13. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    14. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    15. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    16. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 43(1 (Spring), pages 81-156.
    17. Alexander Chudik & M. Hashem Pesaran & Elisa Tosetti, 2011. "Weak and strong cross‐section dependence and estimation of large panels," Econometrics Journal, Royal Economic Society, vol. 14(1), pages 45-90, February.
    18. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    19. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    20. James H. James & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," Working Papers 2005-2, Princeton University. Economics Department..
    21. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    22. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2006. "Forecasting using a large number of predictors: is Bayesian regression a valid alternative to principal components?," Discussion Paper Series 1: Economic Studies 2006,32, Deutsche Bundesbank.
    23. In Choi & Dukpa Kim & Yun Jung Kim & Noh‐Sun Kwark, 2018. "A multilevel factor model: Identification, asymptotic theory and applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 33(3), pages 355-377, April.
    24. Onatski, Alexei, 2015. "Asymptotic analysis of the squared estimation error in misspecified factor models," Journal of Econometrics, Elsevier, vol. 186(2), pages 388-406.
    25. Donald W. K. Andrews & Xu Cheng, 2012. "Estimation and Inference With Weak, Semi‐Strong, and Strong Identification," Econometrica, Econometric Society, vol. 80(5), pages 2153-2211, September.
    26. Xavier Gabaix, 2011. "The Granular Origins of Aggregate Fluctuations," Econometrica, Econometric Society, vol. 79(3), pages 733-772, May.
    27. Kapetanios, George, 2010. "A Testing Procedure for Determining the Number of Factors in Approximate Factor Models With Large Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(3), pages 397-409.
    28. Long, John B, Jr & Plosser, Charles I, 1983. "Real Business Cycles," Journal of Political Economy, University of Chicago Press, vol. 91(1), pages 39-69, February.
    29. Kleibergen, Frank, 2009. "Tests of risk premia in linear factor models," Journal of Econometrics, Elsevier, vol. 149(2), pages 149-173, April.
    30. Hallin, Marc & Liska, Roman, 2007. "Determining the Number of Factors in the General Dynamic Factor Model," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 603-617, June.
    31. Jushan Bai, 2003. "Inferential Theory for Factor Models of Large Dimensions," Econometrica, Econometric Society, vol. 71(1), pages 135-171, January.
    32. Bernanke, Ben S., 1986. "Alternative explanations of the money-income correlation," Carnegie-Rochester Conference Series on Public Policy, Elsevier, vol. 25(1), pages 49-99, January.
    33. Bai, Jushan & Ng, Serena, 2013. "Principal components estimation and identification of static factors," Journal of Econometrics, Elsevier, vol. 176(1), pages 18-29.
    34. Green, Richard C & Hollifield, Burton, 1992. "When Will Mean-Variance Efficient Portfolios Be Well Diversified?," Journal of Finance, American Finance Association, vol. 47(5), pages 1785-1809, December.
    35. Yoshimasa Uematsu & Takashi Yamagatay, 2020. "Estimation of Weak Factor Models," DSSR Discussion Papers 108, Graduate School of Economics and Management, Tohoku University.
    36. Tomohiro Ando & Jushan Bai, 2017. "Clustering Huge Number of Financial Time Series: A Panel Data Approach With High-Dimensional Predictors and Factor Structures," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1182-1198, July.
    37. Bai, Jushan & Ng, Serena, 2019. "Rank regularized estimation of approximate factor models," Journal of Econometrics, Elsevier, vol. 212(1), pages 78-96.
    38. De Mol, Christine & Giannone, Domenico & Reichlin, Lucrezia, 2008. "Forecasting using a large number of predictors: Is Bayesian shrinkage a valid alternative to principal components?," Journal of Econometrics, Elsevier, vol. 146(2), pages 318-328, October.
    39. Alexei Onatski, 2010. "Determining the Number of Factors from Empirical Distribution of Eigenvalues," The Review of Economics and Statistics, MIT Press, vol. 92(4), pages 1004-1016, November.
    40. Jos Berge & Henk Kiers, 1991. "A numerical approach to the approximate and the exact minimum rank of a covariance matrix," Psychometrika, Springer;The Psychometric Society, vol. 56(2), pages 309-315, June.
    41. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    42. Tibor F. Liska, 2007. "The Liska model," Society and Economy, Akadémiai Kiadó, Hungary, vol. 29(3), pages 363-381, December.
    43. Dias Francisco & Pinheiro Maximiano & Rua António, 2013. "Determining the number of global and country-specific factors in the euro area," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(5), pages 573-617, December.
    44. Onatski, Alexei, 2012. "Asymptotics of the principal components estimator of large factor models with weakly influential factors," Journal of Econometrics, Elsevier, vol. 168(2), pages 244-258.
    45. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    46. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    47. Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
    48. Carvalho, Carlos M. & Chang, Jeffrey & Lucas, Joseph E. & Nevins, Joseph R. & Wang, Quanli & West, Mike, 2008. "High-Dimensional Sparse Factor Modeling: Applications in Gene Expression Genomics," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1438-1456.
    49. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-09 Recession," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 44(1 (Spring), pages 81-156.
    50. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    51. Michael Horvath, 1998. "Cyclicality and Sectoral Linkages: Aggregate Fluctuations from Independent Sectoral Shocks," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 1(4), pages 781-808, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Matteo Barigozzi & Marc Hallin, 2024. "The Dynamic, the Static, and the Weak Factor Models and the Analysis of High-Dimensional Time Series," Working Papers ECARES 2024-14, ULB -- Universite Libre de Bruxelles.
    2. Bai, Jushan & Ng, Serena, 2023. "Approximate factor models with weaker loadings," Journal of Econometrics, Elsevier, vol. 235(2), pages 1893-1916.
    3. Natalia Bailey & George Kapetanios & M. Hashem Pesaran, 2021. "Measurement of factor strength: Theory and practice," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 587-613, August.
    4. Jie Wei & Yonghui Zhang, 2023. "Does Principal Component Analysis Preserve the Sparsity in Sparse Weak Factor Models?," Papers 2305.05934, arXiv.org.
    5. Saman Banafti & Tae-Hwy Lee, 2022. "Inferential Theory for Granular Instrumental Variables in High Dimensions," Working Papers 202203, University of California at Riverside, Department of Economics.
    6. Guo, Xiao & Chen, Yu & Tang, Cheng Yong, 2023. "Information criteria for latent factor models: A study on factor pervasiveness and adaptivity," Journal of Econometrics, Elsevier, vol. 233(1), pages 237-250.
    7. Jianqing Fan & Yuling Yan & Yuheng Zheng, 2024. "When can weak latent factors be statistically inferred?," Papers 2407.03616, arXiv.org, revised Sep 2024.
    8. Wanbo Lu & Guanglin Huang & Kris Boudt, 2024. "Estimation of Non-Gaussian Factors Using Higher-order Multi-cumulants in Weak Factor Models," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 24/1085, Ghent University, Faculty of Economics and Business Administration.
    9. Fu, Zhonghao & Hong, Yongmiao & Wang, Xia, 2023. "Testing for structural changes in large dimensional factor models via discrete Fourier transform," Journal of Econometrics, Elsevier, vol. 233(1), pages 302-331.
    10. Matteo Barigozzi, 2023. "Quasi Maximum Likelihood Estimation of High-Dimensional Factor Models: A Critical Review," Papers 2303.11777, arXiv.org, revised May 2024.
    11. Gregory Cox, 2022. "Weak Identification in Low-Dimensional Factor Models with One or Two Factors," Papers 2211.00329, arXiv.org, revised Mar 2024.
    12. Sylvia Kaufmann & Markus Pape, 2023. "Bayesian (non-)unique sparse factor modelling," Working Papers 23.04, Swiss National Bank, Study Center Gerzensee.
    13. Diego Fresoli & Pilar Poncela & Esther Ruiz, 2024. "Dealing with idiosyncratic cross-correlation when constructing confidence regions for PC factors," Papers 2407.06883, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Simon Freyaldenhoven, 2017. "A Generalized Factor Model with Local Factors," 2017 Papers pfr361, Job Market Papers.
    2. Simon Freyaldenhoven, 2020. "Identification Through Sparsity in Factor Models," Working Papers 20-25, Federal Reserve Bank of Philadelphia.
    3. Choi, In & Lin, Rui & Shin, Yongcheol, 2023. "Canonical correlation-based model selection for the multilevel factors," Journal of Econometrics, Elsevier, vol. 233(1), pages 22-44.
    4. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    5. Catherine Doz & Peter Fuleky, 2019. "Dynamic Factor Models," Working Papers 2019-4, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
    6. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," DSSR Discussion Papers 96, Graduate School of Economics and Management, Tohoku University.
    7. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    8. Mao Takongmo, Charles Olivier & Stevanovic, Dalibor, 2015. "Selection Of The Number Of Factors In Presence Of Structural Instability: A Monte Carlo Study," L'Actualité Economique, Société Canadienne de Science Economique, vol. 91(1-2), pages 177-233, Mars-Juin.
    9. Francisco Corona & Pilar Poncela & Esther Ruiz, 2017. "Determining the number of factors after stationary univariate transformations," Empirical Economics, Springer, vol. 53(1), pages 351-372, August.
    10. Alain-Philippe Fortin & Patrick Gagliardini & O. Scaillet, 2022. "Eigenvalue tests for the number of latent factors in short panels," Swiss Finance Institute Research Paper Series 22-81, Swiss Finance Institute.
    11. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    12. Poncela, Pilar & Ruiz, Esther & Miranda, Karen, 2021. "Factor extraction using Kalman filter and smoothing: This is not just another survey," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1399-1425.
    13. Alexander Chudik & M. Hashem Pesaran, 2013. "Large panel data models with cross-sectional dependence: a survey," Globalization Institute Working Papers 153, Federal Reserve Bank of Dallas.
    14. Lütkepohl, Helmut, 2014. "Structural vector autoregressive analysis in a data rich environment: A survey," SFB 649 Discussion Papers 2014-004, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    15. Karim Barhoumi & Olivier Darné & Laurent Ferrara, 2014. "Dynamic factor models: A review of the literature," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2013(2), pages 73-107.
    16. Yoshimasa Uematsu & Takashi Yamagata, 2019. "Estimation of Weak Factor Models," ISER Discussion Paper 1053r, Institute of Social and Economic Research, Osaka University, revised Mar 2020.
    17. Helmut Lütkepohl, 2014. "Structural Vector Autoregressive Analysis in a Data Rich Environment: A Survey," Discussion Papers of DIW Berlin 1351, DIW Berlin, German Institute for Economic Research.
    18. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    19. Onatski, Alexei, 2015. "Asymptotic analysis of the squared estimation error in misspecified factor models," Journal of Econometrics, Elsevier, vol. 186(2), pages 388-406.
    20. Bai, Jushan & Liao, Yuan, 2016. "Efficient estimation of approximate factor models via penalized maximum likelihood," Journal of Econometrics, Elsevier, vol. 191(1), pages 1-18.

    More about this item

    Keywords

    High-dimensional data; Factor models; Weak factors; Local factors; Sparsity;
    All these keywords.

    JEL classification:

    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:229:y:2022:i:1:p:80-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.