(Translated by https://www.hiragana.jp/)
Some remarks on Koziol’s kurtosis
IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v175y2020ics0047259x19303604.html
   My bibliography  Save this article

Some remarks on Koziol’s kurtosis

Author

Listed:
  • Loperfido, Nicola

Abstract

James Koziol, in his 1987 and 1989 papers, proposed to use the sums of either the squared fourth-order cumulants or moments as test statistics for multivariate normality. His proposals are by far less popular than Mardia’s measure of multivariate kurtosis, that is the fourth moment of the Mahalanobis distance of a random vector from its mean. We investigate some properties of Koziol’s measures of multivariate kurtosis which motivate their use in statistical practice. Firstly, we show some of their connections with Mahalanobis angles. Secondly, we use inequalities to highlight their connections with other measures of multivariate skewness and kurtosis. Thirdly, we obtain their analytical formulae for some well-known multivariate statistical models. Simple examples illustrate the interpretation of Koziol’s measures of multivariate kurtosis and detect a wrong statement about them which appeared in the statistical literature. We suggest that Mardia’s and Koziol’s measures of kurtosis should be used together to detect interesting data structures.

Suggested Citation

  • Loperfido, Nicola, 2020. "Some remarks on Koziol’s kurtosis," Journal of Multivariate Analysis, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19303604
    DOI: 10.1016/j.jmva.2019.104565
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X19303604
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2019.104565?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jones, M. C. & Rosco, J. F. & Pewsey, Arthur, 2011. "Skewness-Invariant Measures of Kurtosis," The American Statistician, American Statistical Association, vol. 65(2), pages 89-95.
    2. Nicola Loperfido, 2020. "Kurtosis-based projection pursuit for outlier detection in financial time series," The European Journal of Finance, Taylor & Francis Journals, vol. 26(2-3), pages 142-164, February.
    3. Loperfido, Nicola, 2014. "Linear transformations to symmetry," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 186-192.
    4. Christopher Adcock & Martin Eling & Nicola Loperfido, 2015. "Skewed distributions in finance and actuarial science: a review," The European Journal of Finance, Taylor & Francis Journals, vol. 21(13-14), pages 1253-1281, November.
    5. Guy Nason, 1995. "Three‐Dimensional Projection Pursuit," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 44(4), pages 411-430, December.
    6. Kollo, Tõnu, 2008. "Multivariate skewness and kurtosis measures with an application in ICA," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2328-2338, November.
    7. Yanagihara, Hirokazu, 2007. "A family of estimators for multivariate kurtosis in a nonnormal linear regression model," Journal of Multivariate Analysis, Elsevier, vol. 98(1), pages 1-29, January.
    8. Zografos, K., 2008. "On Mardia's and Song's measures of kurtosis in elliptical distributions," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 858-879, May.
    9. J. Koziol, 1987. "An alternative formulation of Neyman’s smooth goodness of fit tests under composite alternatives," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 34(1), pages 17-24, December.
    10. Norbert Henze, 2002. "Invariant tests for multivariate normality: a critical review," Statistical Papers, Springer, vol. 43(4), pages 467-506, October.
    11. Best, D. J. & Rayner, J. C. W., 1988. "A test for bivariate normality," Statistics & Probability Letters, Elsevier, vol. 6(6), pages 407-412, May.
    12. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2005. "The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 237-264, October.
    13. Ogasawara, Haruhiko, 2017. "Extensions of Pearson’s inequality between skewness and kurtosis to multivariate cases," Statistics & Probability Letters, Elsevier, vol. 130(C), pages 12-16.
    14. K. V. Mardia, 1975. "Assessment of Multinormality and the Robustness of Hotelling's T2. Test," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 24(2), pages 163-171, June.
    15. Klar, Bernhard, 2002. "A Treatment of Multivariate Skewness, Kurtosis, and Related Statistics," Journal of Multivariate Analysis, Elsevier, vol. 83(1), pages 141-165, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    2. Kim, Byungwon & Schulz, Jörn & Jung, Sungkyu, 2020. "Kurtosis test of modality for rotationally symmetric distributions on hyperspheres," Journal of Multivariate Analysis, Elsevier, vol. 178(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & György H. Terdik, 2021. "Asymptotic theory for statistics based on cumulant vectors with applications," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 708-728, June.
    2. Loperfido, Nicola, 2021. "Some theoretical properties of two kurtosis matrices, with application to invariant coordinate selection," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    3. Dante Amengual & Gabriele Fiorentini & Enrique Sentana, 2021. "Multivariate Hermite polynomials and information matrix tests," Working Paper series 21-12, Rimini Centre for Economic Analysis.
    4. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2020. "Edgeworth Expansions for Multivariate Random Sums," Working Papers 2020:9, Örebro University, School of Business.
    5. Javed, Farrukh & Loperfido, Nicola & Mazur, Stepan, 2024. "Edgeworth expansions for multivariate random sums," Econometrics and Statistics, Elsevier, vol. 31(C), pages 66-80.
    6. Baishuai Zuo & Narayanaswamy Balakrishnan & Chuancun Yin, 2023. "An analysis of multivariate measures of skewness and kurtosis of skew-elliptical distributions," Papers 2311.18176, arXiv.org.
    7. Nicola Loperfido, 2023. "Kurtosis removal for data pre-processing," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(1), pages 239-267, March.
    8. Hanke, Michael & Penev, Spiridon & Schief, Wolfgang & Weissensteiner, Alex, 2017. "Random orthogonal matrix simulation with exact means, covariances, and multivariate skewness," European Journal of Operational Research, Elsevier, vol. 263(2), pages 510-523.
    9. Arismendi, J.C., 2013. "Multivariate truncated moments," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 41-75.
    10. Margus Pihlak, 2014. "Modelling of Skewness Measure Distribution," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 15(1), pages 145-152, January.
    11. Nicola Loperfido, 2019. "Finite mixtures, projection pursuit and tensor rank: a triangulation," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(1), pages 145-173, March.
    12. Abdi, Me’raj & Madadi, Mohsen & Balakrishnan, Narayanaswamy & Jamalizadeh, Ahad, 2021. "Family of mean-mixtures of multivariate normal distributions: Properties, inference and assessment of multivariate skewness," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    13. Tanya Araujo & João Dias & Samuel Eleutério & Francisco Louçã, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Working Papers Department of Economics 2012/21, ISEG - Lisbon School of Economics and Management, Department of Economics, Universidade de Lisboa.
    14. Wanfang Chen & Marc G. Genton, 2023. "Are You All Normal? It Depends!," International Statistical Review, International Statistical Institute, vol. 91(1), pages 114-139, April.
    15. Dante Amengual & Xinyue Bei & Enrique Sentana, 2022. "Normal but skewed?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(7), pages 1295-1313, November.
    16. Loperfido, Nicola, 2024. "The skewness of mean–variance normal mixtures," Journal of Multivariate Analysis, Elsevier, vol. 199(C).
    17. Tanya Ara'ujo & Jo~ao Dias & Samuel Eleut'erio & Francisco Louc{c}~a, 2012. "How Fama Went Wrong: Measures of Multivariate Kurtosis for the Identification of the Dynamics of a N-Dimensional Market," Papers 1207.1202, arXiv.org.
    18. Nicola Loperfido & Tomer Shushi, 2023. "Optimal Portfolio Projections for Skew-Elliptically Distributed Portfolio Returns," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 143-166, October.
    19. Sreenivasa Rao Jammalamadaka & Emanuele Taufer & Gyorgy H. Terdik, 2021. "On Multivariate Skewness and Kurtosis," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 607-644, August.
    20. Bruno Ebner & Norbert Henze, 2020. "Tests for multivariate normality—a critical review with emphasis on weighted $$L^2$$ L 2 -statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(4), pages 845-892, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:175:y:2020:i:c:s0047259x19303604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.