(Translated by https://www.hiragana.jp/)
The value of technology and of its evolution towards a low carbon economy
IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v114y2012i1p39-57.html
   My bibliography  Save this article

The value of technology and of its evolution towards a low carbon economy

Author

Listed:
  • Massimo Tavoni
  • Enrica Cian
  • Gunnar Luderer
  • Jan Steckel
  • Henri Waisman

Abstract

This paper assesses the economic value associated with the development of various low-carbon technologies in the context of climate stabilization. We analyze the impact of restrictions on the development of specific mitigation technologies, comparing three integrated assessment models used in the RECIPE comparison exercise. Our results indicate that the diversification of the carbon mitigation portfolio is an important determinant of the feasibility of climate policy. Foregoing specific low carbon technologies raises the cost of achieving the climate policy, though at different rates. CCS and renewables are shown to have the highest value, given their flexibility and wide coverage. The costs associated with technology failure are shown to be related to the role that each technology plays in the stabilization scenario, but also to the expectations about their technological progress. In particular, the costs of restriction of mature technologies can be partly compensated by more innovation and technological advancement. Copyright Springer Science+Business Media B.V. 2012

Suggested Citation

  • Massimo Tavoni & Enrica Cian & Gunnar Luderer & Jan Steckel & Henri Waisman, 2012. "The value of technology and of its evolution towards a low carbon economy," Climatic Change, Springer, vol. 114(1), pages 39-57, September.
  • Handle: RePEc:spr:climat:v:114:y:2012:i:1:p:39-57
    DOI: 10.1007/s10584-011-0294-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10584-011-0294-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10584-011-0294-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    2. Valentina Bosetti & Carlo Carraro & Marzio Galeotti & Emanuele Massetti & Massimo Tavoni, 2006. "WITCH. A World Induced Technical Change Hybrid Model," Working Papers 2006_46, Department of Economics, University of Venice "Ca' Foscari".
    3. Davis, Graham A. & Owens, Brandon, 2003. "Optimizing the level of renewable electric R&D expenditures using real options analysis," Energy Policy, Elsevier, vol. 31(15), pages 1589-1608, December.
    4. Olivier Sassi & Renaud Crassous & Jean-Charles Hourcade & Vincent Gitz & Henri Waisman & Celine Guivarch, 2010. "IMACLIM-R: a modelling framework to simulate sustainable development pathways," International Journal of Global Environmental Issues, Inderscience Enterprises Ltd, vol. 10(1/2), pages 5-24.
    5. Ottmar Edenhofer & Kai Lessmann & Claudia Kemfert & Michael Grubb & Jonathan Köhler, 2006. "Induced Technological Change: Exploring its Implications for the Economics of Atmospheric Stabilization: Synthesis Report from the innovation Modeling Comparison Project," The Energy Journal, , vol. 27(1_suppl), pages 57-108, January.
    6. Valentina Bosetti, Carlo Carraro, Marzio Galeotti, Emanuele Massetti, Massimo Tavoni, 2006. "A World induced Technical Change Hybrid Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 13-38.
    7. Nemet, Gregory F. & Kammen, Daniel M., 2007. "U.S. energy research and development: Declining investment, increasing need, and the feasibility of expansion," Energy Policy, Elsevier, vol. 35(1), pages 746-755, January.
    8. Carraro, Carlo & Duval, Romain & Bosetti, Valentina & Tavoni, Massimo, 2010. "What Should we Expect from Innovation? A Model-Based Assessment of the Environmental and Mitigation Cost Implications of Climat," CEPR Discussion Papers 7751, C.E.P.R. Discussion Papers.
    9. Clarke, Leon & Weyant, John & Edmonds, Jae, 2008. "On the sources of technological change: What do the models assume," Energy Economics, Elsevier, vol. 30(2), pages 409-424, March.
    10. Valentina Bosetti & Carlo Carraro & Massimo Tavoni, 2009. "Climate Policy after 2012," CESifo Economic Studies, CESifo Group, vol. 55(2), pages 235-254, June.
    11. Richels, Richard G. & Blanford, Geoffrey J., 2008. "The value of technological advance in decarbonizing the U.S. economy," Energy Economics, Elsevier, vol. 30(6), pages 2930-2946, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Enrica De Cian & Fabio Sferra & Massimo Tavoni, 2013. "The Influence of Economic Growth, Population, and Fossil Fuel Scarcity on Energy Investments," Working Papers 2013.59, Fondazione Eni Enrico Mattei.
    2. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    3. Bosetti, Valentina & Longden, Thomas, 2013. "Light duty vehicle transportation and global climate policy: The importance of electric drive vehicles," Energy Policy, Elsevier, vol. 58(C), pages 209-219.
    4. Hübler, Michael & Baumstark, Lavinia & Leimbach, Marian & Edenhofer, Ottmar & Bauer, Nico, 2012. "An integrated assessment model with endogenous growth," Ecological Economics, Elsevier, vol. 83(C), pages 118-131.
    5. Enrica Cian & Valentina Bosetti & Massimo Tavoni, 2012. "Technology innovation and diffusion in “less than ideal” climate policies: An assessment with the WITCH model," Climatic Change, Springer, vol. 114(1), pages 121-143, September.
    6. Steckel, Jan Christoph & Brecha, Robert J. & Jakob, Michael & Strefler, Jessica & Luderer, Gunnar, 2013. "Development without energy? Assessing future scenarios of energy consumption in developing countries," Ecological Economics, Elsevier, vol. 90(C), pages 53-67.
    7. Gunnar Luderer & Valentina Bosetti & Michael Jakob & Marian Leimbach & Jan Steckel & Henri Waisman & Ottmar Edenhofer, 2012. "The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison," Climatic Change, Springer, vol. 114(1), pages 9-37, September.
    8. Emanuele Massetti & Lea Nicita, 2010. "The Optimal Climate Policy Portfolio when Knowledge Spills across Sectors," CESifo Working Paper Series 2988, CESifo.
    9. De Cian, Enrica & Tavoni, Massimo, 2012. "Do technology externalities justify restrictions on emission permit trading?," Resource and Energy Economics, Elsevier, vol. 34(4), pages 624-646.
    10. Bosello, Francesco & Carraro, Carlo & De Cian, Enrica, 2013. "Adaptation can help mitigation: an integrated approach to post-2012 climate policy," Environment and Development Economics, Cambridge University Press, vol. 18(3), pages 270-290, June.
    11. Carraro, Carlo & Favero, Alice & Massetti, Emanuele, 2012. "“Investments and public finance in a green, low carbon, economy”," Energy Economics, Elsevier, vol. 34(S1), pages 15-28.
    12. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
    13. Guivarch, Céline & Hallegatte, Stéphane & Crassous, Renaud, 2009. "The resilience of the Indian economy to rising oil prices as a validation test for a global energy-environment-economy CGE model," Energy Policy, Elsevier, vol. 37(11), pages 4259-4266, November.
    14. CARRARO Carlo & MASSETTI Emanuele & NICITA Lea, 2010. "How Does Climate Policy Affect Technical Change? ?An Analysis of the Direction and Pace of Technical Progress in a Climate-Economy Model (Fondazione Eni Enrico Mattei)," ESRI Discussion paper series 229, Economic and Social Research Institute (ESRI).
    15. Bosetti, Valentina & Carraro, Carlo & Massetti, Emanuele & Tavoni, Massimo, 2008. "International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization," Energy Economics, Elsevier, vol. 30(6), pages 2912-2929, November.
    16. Enrica De Cian & Valentina Bosetti & Alessandra Sgobbi & Massimo Tavoni, 2009. "The 2008 WITCH Model: New Model Features and Baseline," Working Papers 2009.85, Fondazione Eni Enrico Mattei.
    17. Zheng, Jiali & Duan, Hongbo & Zhou, Sheng & Wang, Shouyang & Gao, Ji & Jiang, Kejun & Gao, Shuo, 2021. "Limiting global warming to below 1.5 °C from 2 °C: An energy-system-based multi-model analysis for China," Energy Economics, Elsevier, vol. 100(C).
    18. Lessmann, Kai & Marschinski, Robert & Edenhofer, Ottmar, 2009. "The effects of tariffs on coalition formation in a dynamic global warming game," Economic Modelling, Elsevier, vol. 26(3), pages 641-649, May.
    19. Emanuele Massetti & Elena Claire Ricci, 2011. "Super-Grids and Concentrated Solar Power: A Scenario Analysis with the WITCH Model," Working Papers 2011.47, Fondazione Eni Enrico Mattei.
    20. Gunnar Luderer & Enrica DeCian & Jean-Charles Hourcade & Marian Leimbach & Henri Waisman & Ottmar Edenhofer, 2012. "On the regional distribution of mitigation costs in a global cap-and-trade regime," Climatic Change, Springer, vol. 114(1), pages 59-78, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:114:y:2012:i:1:p:39-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.