Simulation of the drawdown and its duration in L\'{e}vy models via stick-breaking Gaussian approximation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Oleg Kudryavtsev & Sergei Levendorskiǐ, 2009. "Fast and accurate pricing of barrier options under Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 531-562, September.
- S. G. Kou, 2002. "A Jump-Diffusion Model for Option Pricing," Management Science, INFORMS, vol. 48(8), pages 1086-1101, August.
- Michael B. Giles & Yuan Xia, 2017. "Multilevel Monte Carlo for exponential Lévy models," Finance and Stochastics, Springer, vol. 21(4), pages 995-1026, October.
- Avram, Florin & Chan, Terence & Usabel, Miguel, 0. "On the valuation of constant barrier options under spectrally one-sided exponential Lévy models and Carr's approximation for American puts," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 75-107, July.
- Michael B. Giles, 2008. "Multilevel Monte Carlo Path Simulation," Operations Research, INFORMS, vol. 56(3), pages 607-617, June.
- Merton, Robert C., 1976.
"Option pricing when underlying stock returns are discontinuous,"
Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
- Merton, Robert C., 1975. "Option pricing when underlying stock returns are discontinuous," Working papers 787-75., Massachusetts Institute of Technology (MIT), Sloan School of Management.
- Dereich, Steffen & Heidenreich, Felix, 2011. "A multilevel Monte Carlo algorithm for Lévy-driven stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1565-1587, July.
- Young Shin Kim & Svetlozar T. Rachev & Michele Leonardo Bianchi & Frank J. Fabozzi, 2009. "A New Tempered Stable Distribution and Its Application to Finance," Contributions to Economics, in: Georg Bol & Svetlozar T. Rachev & Reinhold Würth (ed.), Risk Assessment, pages 77-109, Springer.
- Leif Andersen & Alexander Lipton, 2013. "Asymptotics For Exponential Lévy Processes And Their Volatility Smile: Survey And New Results," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 1-98.
- Mike Giles & Yuan Xia, 2014. "Multilevel Monte Carlo For Exponential L\'{e}vy Models," Papers 1403.5309, arXiv.org, revised May 2017.
- Picard, Jean, 1997. "Density in small time at accessible points for jump processes," Stochastic Processes and their Applications, Elsevier, vol. 67(2), pages 251-279, May.
- Li, Ping & Zhao, Wu & Zhou, Wei, 2015. "Ruin probabilities and optimal investment when the stock price follows an exponential Lévy process," Applied Mathematics and Computation, Elsevier, vol. 259(C), pages 1030-1045.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jorge González Cázares & Aleksandar Mijatović, 2022. "Simulation of the drawdown and its duration in Lévy models via stick-breaking Gaussian approximation," Finance and Stochastics, Springer, vol. 26(4), pages 671-732, October.
- Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c, 2021. "Monte Carlo algorithm for the extrema of tempered stable processes," Papers 2103.15310, arXiv.org, revised Dec 2022.
- Kahalé, Nabil, 2020. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," European Journal of Operational Research, Elsevier, vol. 287(2), pages 739-748.
- Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
- Volk-Makarewicz, Warren & Borovkova, Svetlana & Heidergott, Bernd, 2022. "Assessing the impact of jumps in an option pricing model: A gradient estimation approach," European Journal of Operational Research, Elsevier, vol. 298(2), pages 740-751.
- Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
- Xun Li & Ping Lin & Xue-Cheng Tai & Jinghui Zhou, 2015. "Pricing Two-asset Options under Exponential L\'evy Model Using a Finite Element Method," Papers 1511.04950, arXiv.org.
- Mike Giles & Lukasz Szpruch, 2012. "Multilevel Monte Carlo methods for applications in finance," Papers 1212.1377, arXiv.org.
- Nabil Kahale, 2018. "General multilevel Monte Carlo methods for pricing discretely monitored Asian options," Papers 1805.09427, arXiv.org, revised Sep 2018.
- Svetlana Boyarchenko & Sergei Levendorskii, 2023. "Alternative models for FX, arbitrage opportunities and efficient pricing of double barrier options in L\'evy models," Papers 2312.03915, arXiv.org.
- Chan, Tat Lung (Ron), 2019. "Efficient computation of european option prices and their sensitivities with the complex fourier series method," The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Fomichov, Vladimir & González Cázares, Jorge & Ivanovs, Jevgenijs, 2021. "Implementable coupling of Lévy process and Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 407-431.
- Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
- Jean-Philippe Aguilar, 2019. "The value of power-related options under spectrally negative L\'evy processes," Papers 1910.07971, arXiv.org, revised Jan 2021.
- Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
- Sergei Levendorskiĭ, 2022. "Operators and Boundary Problems in Finance, Economics and Insurance: Peculiarities, Efficient Methods and Outstanding Problems," Mathematics, MDPI, vol. 10(7), pages 1-36, March.
- Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
- Yuan Xia, 2011. "Multilevel Monte Carlo method for jump-diffusion SDEs," Papers 1106.4730, arXiv.org.
- Viktor Stojkoski & Trifce Sandev & Lasko Basnarkov & Ljupco Kocarev & Ralf Metzler, 2020. "Generalised geometric Brownian motion: Theory and applications to option pricing," Papers 2011.00312, arXiv.org.
- Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-CMP-2020-12-07 (Computational Economics)
- NEP-ORE-2020-12-07 (Operations Research)
- NEP-RMG-2020-12-07 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2011.06618. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.