(Translated by https://www.hiragana.jp/)
Dynamic Spatial Autoregressive Models with Time-varying Spatial Weighting Matrices
IDEAS home Printed from https://ideas.repec.org/p/bzn/wpaper/bemps55.html
   My bibliography  Save this paper

Dynamic Spatial Autoregressive Models with Time-varying Spatial Weighting Matrices

Author

Listed:
  • Anna Gloria Billé

    (Free University of Bolzano‐Bozen, Faculty of Economics, Italy)

  • Leopoldo Catania

    (Aarhus University, Department of Economics and Business Economics and CREATES, Denmark)

Abstract

We propose a new spatio-temporal model with time-varying spatial weighting matrices. We allow for a general parameterization of the spatial matrix, such as: (i) a function of the inverse distances among pairs of units to the power of an unknown time-varying distance decay parameter, and (ii) a negative exponential function of the time-varying parameter as in (i). The filtering procedure of the time-varying parameters is performed using the information in the score of the conditional distribution of the observables. An extensive Monte Carlo simulation study to investigate the finite sample properties of the ML estimator is reported. We analyze the association between eight European countries' perceived risk, suggesting that the economically strong countries have their perceived risk increased due to their spatial connection with the economically weaker countries, and we investigates the evolution of the spatial connection between the house prices in different areas of the UK, identifying periods when the usually adopted sparse weighting matrix is not sufficient to describe the underlying spatial process.

Suggested Citation

  • Anna Gloria Billé & Leopoldo Catania, 2018. "Dynamic Spatial Autoregressive Models with Time-varying Spatial Weighting Matrices," BEMPS - Bozen Economics & Management Paper Series BEMPS55, Faculty of Economics and Management at the Free University of Bozen.
  • Handle: RePEc:bzn:wpaper:bemps55
    as

    Download full text from publisher

    File URL: https://repec.unibz.it/bemps55.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
    2. Fischer, Manfred M. & Scherngell, Thomas & Reismann, Martin, 2008. "Knowledge spillovers and total factor productivity. Evidence using a spatial panel data model," MPRA Paper 77762, University Library of Munich, Germany.
    3. Creal, Drew & Koopman, Siem Jan & Lucas, André, 2011. "A Dynamic Multivariate Heavy-Tailed Model for Time-Varying Volatilities and Correlations," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(4), pages 552-563.
    4. Baltagi, Badi H. & Egger, Peter & Pfaffermayr, Michael, 2008. "Estimating regional trade agreement effects on FDI in an interdependent world," Journal of Econometrics, Elsevier, vol. 145(1-2), pages 194-208, July.
    5. Holly, Sean & Pesaran, M. Hashem & Yamagata, Takashi, 2010. "A spatio-temporal model of house prices in the USA," Journal of Econometrics, Elsevier, vol. 158(1), pages 160-173, September.
    6. Holly, Sean & Hashem Pesaran, M. & Yamagata, Takashi, 2011. "The spatial and temporal diffusion of house prices in the UK," Journal of Urban Economics, Elsevier, vol. 69(1), pages 2-23, January.
    7. Bhattacharjee, Arnab & Jensen-Butler, Chris, 2013. "Estimation of the spatial weights matrix under structural constraints," Regional Science and Urban Economics, Elsevier, vol. 43(4), pages 617-634.
    8. Kelejian, Harry H & Prucha, Ingmar R, 1998. "A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 99-121, July.
    9. Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107630024, September.
    10. Kelejian, Harry H. & Prucha, Ingmar R., 2010. "Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Econometrics, Elsevier, vol. 157(1), pages 53-67, July.
    11. Luisa Corrado & Bernard Fingleton, 2012. "Where Is The Economics In Spatial Econometrics?," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 210-239, May.
    12. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    13. Pesaran, M. Hashem & Tosetti, Elisa, 2011. "Large panels with common factors and spatial correlation," Journal of Econometrics, Elsevier, vol. 161(2), pages 182-202, April.
    14. Wang, Wei & Yu, Jihai, 2015. "Estimation of spatial panel data models with time varying spatial weights matrices," Economics Letters, Elsevier, vol. 128(C), pages 95-99.
    15. Ryan R. Brady, 2011. "Measuring the diffusion of housing prices across space and over time," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 26(2), pages 213-231, March.
    16. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    17. Armin Eder & Sebastian Keiler, 2015. "CDS Spreads and Contagion Amongst Systemically Important Financial Institutions – A Spatial Econometric Approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 20(4), pages 291-309, October.
    18. LeSage, James P. & Kelley Pace, R., 2007. "A matrix exponential spatial specification," Journal of Econometrics, Elsevier, vol. 140(1), pages 190-214, September.
    19. Arthur Getis & Jared Aldstadt, 2010. "Constructing the Spatial Weights Matrix Using a Local Statistic," Advances in Spatial Science, in: Luc Anselin & Sergio J. Rey (ed.), Perspectives on Spatial Data Analysis, chapter 0, pages 147-163, Springer.
    20. James P. LeSage & R. Kelley Pace, 2014. "The Biggest Myth in Spatial Econometrics," Econometrics, MDPI, vol. 2(4), pages 1-33, December.
    21. Philip Kostov, 2010. "Model Boosting for Spatial Weighting Matrix Selection in Spatial Lag Models," Environment and Planning B, , vol. 37(3), pages 533-549, June.
    22. Lung-fei Lee & Jihai Yu, 2012. "QML Estimation of Spatial Dynamic Panel Data Models with Time Varying Spatial Weights Matrices," Spatial Economic Analysis, Taylor & Francis Journals, vol. 7(1), pages 31-74, March.
    23. Bao, Yong & Ullah, Aman, 2007. "Finite sample properties of maximum likelihood estimator in spatial models," Journal of Econometrics, Elsevier, vol. 137(2), pages 396-413, April.
    24. Anna Gloria Billé & Roberto Benedetti & Paolo Postiglione, 2017. "A two-step approach to account for unobserved spatial heterogeneity," Spatial Economic Analysis, Taylor & Francis Journals, vol. 12(4), pages 452-471, October.
    25. Emilio Porcu & Moreno Bevilacqua & Marc G. Genton, 2016. "Spatio-Temporal Covariance and Cross-Covariance Functions of the Great Circle Distance on a Sphere," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 888-898, April.
    26. Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
    27. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    28. Blasques, Francisco & Koopman, Siem Jan & Łasak, Katarzyna & Lucas, André, 2016. "In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 875-887.
    29. Daniel P. McMillen, 2012. "Perspectives On Spatial Econometrics: Linear Smoothing With Structured Models," Journal of Regional Science, Wiley Blackwell, vol. 52(2), pages 192-209, May.
    30. repec:hal:journl:peer-00796743 is not listed on IDEAS
    31. J. Paul Elhorst, 2014. "Dynamic Spatial Panels: Models, Methods and Inferences," SpringerBriefs in Regional Science, in: Spatial Econometrics, edition 127, chapter 0, pages 95-119, Springer.
    32. Xiaoyi Han & Lung-Fei Lee, 2016. "Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 642-660, October.
    33. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    34. Lung-fei Lee, 2003. "Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive Model with Autoregressive Disturbances," Econometric Reviews, Taylor & Francis Journals, vol. 22(4), pages 307-335.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leopoldo Catania & Anna Gloria Billé, 2017. "Dynamic spatial autoregressive models with autoregressive and heteroskedastic disturbances," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(6), pages 1178-1196, September.
    2. Giuseppe Arbia, 2011. "A Lustrum of SEA: Recent Research Trends Following the Creation of the Spatial Econometrics Association (2007--2011)," Spatial Economic Analysis, Taylor & Francis Journals, vol. 6(4), pages 377-395, July.
    3. Cynthia Fan Yang, 2021. "Common factors and spatial dependence: an application to US house prices," Econometric Reviews, Taylor & Francis Journals, vol. 40(1), pages 14-50, January.
    4. Francisco (F.) Blasques & Andre (A.) Lucas & Andries van Vlodrop, 2017. "Finite Sample Optimality of Score-Driven Volatility Models," Tinbergen Institute Discussion Papers 17-111/III, Tinbergen Institute.
    5. Blasques, Francisco & Lucas, André & van Vlodrop, Andries C., 2021. "Finite Sample Optimality of Score-Driven Volatility Models: Some Monte Carlo Evidence," Econometrics and Statistics, Elsevier, vol. 19(C), pages 47-57.
    6. Heil, Thomas L.A. & Peter, Franziska J. & Prange, Philipp, 2022. "Measuring 25 years of global equity market co-movement using a time-varying spatial model," Journal of International Money and Finance, Elsevier, vol. 128(C).
    7. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    8. Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016. "Spillover dynamics for systemic risk measurement using spatial financial time series models," Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
    9. Dalhaus, Tatjana & Schaumburg, Julia & Sekhposyan, Tatevik, 2021. "Networking the yield curve: implications for monetary policy," Working Paper Series 2532, European Central Bank.
    10. Blasques, Francisco & van Brummelen, Janneke & Koopman, Siem Jan & Lucas, André, 2022. "Maximum likelihood estimation for score-driven models," Journal of Econometrics, Elsevier, vol. 227(2), pages 325-346.
    11. Guo, Juncong & Qu, Xi, 2020. "Fixed effects spatial panel data models with time-varying spatial dependence," Economics Letters, Elsevier, vol. 196(C).
    12. Solmaria Halleck Vega & J. Paul Elhorst, 2015. "The Slx Model," Journal of Regional Science, Wiley Blackwell, vol. 55(3), pages 339-363, June.
    13. Mauro Bernardi & Leopoldo Catania, 2015. "Switching-GAS Copula Models With Application to Systemic Risk," Papers 1504.03733, arXiv.org, revised Jan 2016.
    14. Gabriel S. Lee & Stefanie Braun, 2021. "Agglomeration Spillover Effects in German Land and House Prices at the City and County Levels," Working Papers 207, Bavarian Graduate Program in Economics (BGPE).
    15. Süleyman Taşpınar & Osman DoĞan & Jiyoung Chae & Anil K. Bera, 2021. "Bayesian Inference in Spatial Stochastic Volatility Models: An Application to House Price Returns in Chicago," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(5), pages 1243-1272, October.
    16. Buccheri, Giuseppe & Corsi, Fulvio & Flandoli, Franco & Livieri, Giulia, 2021. "The continuous-time limit of score-driven volatility models," Journal of Econometrics, Elsevier, vol. 221(2), pages 655-675.
    17. Mustafa Koroglu & Yiguo Sun, 2016. "Functional-Coefficient Spatial Durbin Models with Nonparametric Spatial Weights: An Application to Economic Growth," Econometrics, MDPI, vol. 4(1), pages 1-16, February.
    18. Hannes Böhm & Julia Schaumburg & Lena Tonzer, 2022. "Financial Linkages and Sectoral Business Cycle Synchronization: Evidence from Europe," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 70(4), pages 698-734, December.
    19. Debarsy, Nicolas & Jin, Fei & Lee, Lung-fei, 2015. "Large sample properties of the matrix exponential spatial specification with an application to FDI," Journal of Econometrics, Elsevier, vol. 188(1), pages 1-21.
    20. Rutger-Jan Lange & Andre Lucas & Arjen H. Siegmann, 2016. "Score-Driven Systemic Risk Signaling for European Sovereign Bond Yields and CDS Spreads," Tinbergen Institute Discussion Papers 16-064/IV, Tinbergen Institute.

    More about this item

    Keywords

    Dynamic spatial autoregressive models; Time-varying weighting matrices; Distance decay functions;
    All these keywords.

    JEL classification:

    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bzn:wpaper:bemps55. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: F. Marta L. Di Lascio or Alessandro Fedele (email available below). General contact details of provider: https://edirc.repec.org/data/feubzit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.