A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables
Author
Abstract
Suggested Citation
Note: obl20
Download full text from publisher
Other versions of this item:
- Chen, Jia & Li, Degui & Linton, Oliver, 2019. "A new semiparametric estimation approach for large dynamic covariance matrices with multiple conditioning variables," Journal of Econometrics, Elsevier, vol. 212(1), pages 155-176.
- Jia Chen & Degui Li & Oliver Linton, 2018. "A New Semiparametric Estimation Approach for Large Dynamic Covariance Matrices with Multiple Conditioning Variables," Discussion Papers 18/14, Department of Economics, University of York.
References listed on IDEAS
- Frahm, Gabriel & Memmel, Christoph, 2010.
"Dominating estimators for minimum-variance portfolios,"
Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
- Gabriel Frahm & Christoph Memmel, 2010. "Dominating Estimators for Minimum-Variance Portfolios," Post-Print hal-00741629, HAL.
- Ledoit, Olivier & Wolf, Michael, 2004.
"A well-conditioned estimator for large-dimensional covariance matrices,"
Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
- Ledoit, Olivier & Wolf, Michael, 2000. "A well conditioned estimator for large dimensional covariance matrices," DES - Working Papers. Statistics and Econometrics. WS 10087, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Back, Kerry, 2010. "Asset Pricing and Portfolio Choice Theory," OUP Catalogue, Oxford University Press, number 9780195380613.
- repec:hal:journl:peer-00741629 is not listed on IDEAS
- Tu, Jun & Zhou, Guofu, 2011. "Markowitz meets Talmud: A combination of sophisticated and naive diversification strategies," Journal of Financial Economics, Elsevier, vol. 99(1), pages 204-215, January.
- Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- M. Hashem Pesaran & Paolo Zaffaroni, 2009. "Optimality and Diversifiability of Mean Variance and Arbitrage Pricing Portfolios," CESifo Working Paper Series 2857, CESifo.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
- Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," The Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
- Ledoit, Olivier & Wolf, Michael, 2003.
"Improved estimation of the covariance matrix of stock returns with an application to portfolio selection,"
Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
- Ledoit, Olivier & Wolf, Michael, 2000. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," DES - Working Papers. Statistics and Econometrics. WS 10089, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Olivier Ledoit & Michael Wolf, 2001. "Improved estimation of the covariance matrix of stock returns with an application to portofolio selection," Economics Working Papers 586, Department of Economics and Business, Universitat Pompeu Fabra.
- Li, Degui & Linton, Oliver & Lu, Zudi, 2015. "A flexible semiparametric forecasting model for time series," Journal of Econometrics, Elsevier, vol. 187(1), pages 345-357.
- Shaojun Guo & John Leigh Box & Wenyang Zhang, 2017. "A Dynamic Structure for High-Dimensional Covariance Matrices and Its Application in Portfolio Allocation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 235-253, January.
- Michael W. Brandt, 1999. "Estimating Portfolio and Consumption Choice: A Conditional Euler Equations Approach," Journal of Finance, American Finance Association, vol. 54(5), pages 1609-1645, October.
- Chen, Jia & Li, Degui & Linton, Oliver & Lu, Zudi, 2016.
"Semiparametric dynamic portfolio choice with multiple conditioning variables,"
Journal of Econometrics, Elsevier, vol. 194(2), pages 309-318.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric Dynamic Portfolio Choice with Multiple Conditioning Variables," Discussion Papers 15/01, Department of Economics, University of York.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers 07/15, Institute for Fiscal Studies.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2015. "Semiparametric dynamic portfolio choice with multiple conditioning variables," CeMMAP working papers CWP07/15, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
- Cai, Tony & Liu, Weidong, 2011. "Adaptive Thresholding for Sparse Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 672-684.
- Fama, Eugene F, 1970. "Multiperiod Consumption-Investment Decisions," American Economic Review, American Economic Association, vol. 60(1), pages 163-174, March.
- Wei Biao Wu, 2003. "Nonparametric estimation of large covariance matrices of longitudinal data," Biometrika, Biometrika Trust, vol. 90(4), pages 831-844, December.
- Ingrid K. Glad & Nils Lid Hjort & Nikolai G. Ushakov, 2003. "Correction of Density Estimators that are not Densities," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(2), pages 415-427, June.
- Ziqi Chen & Chenlei Leng, 2016. "Dynamic Covariance Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(515), pages 1196-1207, July.
- Yacine AÏT‐SAHALI & Michael W. Brandt, 2001.
"Variable Selection for Portfolio Choice,"
Journal of Finance, American Finance Association, vol. 56(4), pages 1297-1351, August.
- Yacine Ait-Sahalia & Michael W. Brandt, 2001. "Variable Selection for Portfolio Choice," NBER Working Papers 8127, National Bureau of Economic Research, Inc.
- Ait-Sahalia, Y. & Brandt, M.W., 2001. "Variable Selection for Portfolio Choice," Papers 34, Manitoba - Department of Economics.
- Yacine AÏT-SAHALIA, & Michael W. BRANDT, 2001. "Variable Selection for Portfolio Choice," FAME Research Paper Series rp34, International Center for Financial Asset Management and Engineering.
- Lam, Clifford & Fan, Jianqing, 2009. "Sparsistency and rates of convergence in large covariance matrix estimation," LSE Research Online Documents on Economics 31540, London School of Economics and Political Science, LSE Library.
- Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
- Jianqing Fan & Yang Feng & Jiancheng Jiang & Xin Tong, 2016. "Feature Augmentation via Nonparametrics and Selection (FANS) in High-Dimensional Classification," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(513), pages 275-287, March.
- Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
- Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2019.
"Large Dynamic Covariance Matrices,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 363-375, April.
- Robert F. Engle & Olivier Ledoit & Michael Wolf, 2016. "Large dynamic covariance matrices," ECON - Working Papers 231, Department of Economics - University of Zurich, revised Apr 2017.
- Jia Chen & Degui Li & Oliver Linton & Zudi Lu, 2018. "Semiparametric Ultra-High Dimensional Model Averaging of Nonlinear Dynamic Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(522), pages 919-932, April.
- Rothman, Adam J. & Levina, Elizaveta & Zhu, Ji, 2009. "Generalized Thresholding of Large Covariance Matrices," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 177-186.
- Lam, Clifford & Yao, Qiwei, 2012. "Factor modeling for high-dimensional time series: inference for the number of factors," LSE Research Online Documents on Economics 45684, London School of Economics and Political Science, LSE Library.
- Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
- Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
- Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
- Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jiti Gao & Bin Peng & Yayi Yan, 2022.
"Higher-order Expansions and Inference for Panel Data Models,"
Papers
2205.00577, arXiv.org, revised Jun 2023.
- Jiti Gao & Bin Peng & Yayi Yan, 2023. "Higher-order Expansions and Inference for Panel Data Models," Monash Econometrics and Business Statistics Working Papers 15/23, Monash University, Department of Econometrics and Business Statistics.
- Gao, Jiti & Liu, Fei & Peng, Bin & Yan, Yayi, 2023.
"Binary response models for heterogeneous panel data with interactive fixed effects,"
Journal of Econometrics, Elsevier, vol. 235(2), pages 1654-1679.
- Jiti Gao & Fei Liu & Bin Peng & Yayi Yan, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Papers 2012.03182, arXiv.org, revised Nov 2021.
- Chenlei Leng & Degui Li & Hanlin Shang & Yingcun Xia, 2024. "Covariance Function Estimation for High-Dimensional Functional Time Series with Dual Factor Structures," Papers 2401.05784, arXiv.org, revised Jan 2024.
- Bu, R. & Li, D. & Linton, O. & Wang, H., 2022.
"Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data,"
Cambridge Working Papers in Economics
2218, Faculty of Economics, University of Cambridge.
- Bu, R. & Li, D. & Linton, O. & Wang, H., 2022. "Nonparametric Estimation of Large Spot Volatility Matrices for High-Frequency Financial Data," Janeway Institute Working Papers 2208, Faculty of Economics, University of Cambridge.
- Xuan Liang & Jiti Gao & Xiaodong Gong, 2022.
"Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1784-1802, October.
- Xuan, Liang & Jiti, Gao & xiaodong, Gong, 2021. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," MPRA Paper 108497, University Library of Munich, Germany, revised 30 May 2021.
- Xuan Liang & Jiti Gao & Xiaodong Gong, 2021. "Semiparametric Spatial Autoregressive Panel Data Model with Fixed Effects and Time-Varying Coefficients," Monash Econometrics and Business Statistics Working Papers 5/21, Monash University, Department of Econometrics and Business Statistics.
- Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
- Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
- Xuan Liang & Jiti Gao & Xiaodong Gong, 2019. "Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects," Monash Econometrics and Business Statistics Working Papers 26/19, Monash University, Department of Econometrics and Business Statistics.
- Jiti Gao & Fei Liu & Bin peng, 2020. "Binary Response Models for Heterogeneous Panel Data with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 44/20, Monash University, Department of Econometrics and Business Statistics.
- Jiti Gao & Bin Peng & Yayi Yan, 2022. "A Simple Bootstrap Method for Panel Data Inferences," Monash Econometrics and Business Statistics Working Papers 7/22, Monash University, Department of Econometrics and Business Statistics.
- Ge, S. & Li, S. & Linton, O. B. & Liu, W. & Su, W., 2024. "Should We Augment Large Covariance Matrix Estimation with Auxiliary Network Information?," Janeway Institute Working Papers 2416, Faculty of Economics, University of Cambridge.
- Ge, S. & Li, S. & Linton, O. B. & Liu, W. & Su, W., 2024. "Should We Augment Large Covariance Matrix Estimation with Auxiliary Network Information?," Cambridge Working Papers in Economics 2427, Faculty of Economics, University of Cambridge.
- Wang, Hanchao & Peng, Bin & Li, Degui & Leng, Chenlei, 2021. "Nonparametric estimation of large covariance matrices with conditional sparsity," Journal of Econometrics, Elsevier, vol. 223(1), pages 53-72.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Li, Degui, 2024. "Estimation of Large Dynamic Covariance Matrices: A Selective Review," Econometrics and Statistics, Elsevier, vol. 29(C), pages 16-30.
- Ding, Yi & Li, Yingying & Zheng, Xinghua, 2021. "High dimensional minimum variance portfolio estimation under statistical factor models," Journal of Econometrics, Elsevier, vol. 222(1), pages 502-515.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021.
"Machine Learning and Factor-Based Portfolio Optimization,"
Papers
2107.13866, arXiv.org.
- Thomas Conlon & John Cotter & Iason Kynigakis, 2021. "Machine Learning and Factor-Based Portfolio Optimization," Working Papers 202111, Geary Institute, University College Dublin.
- Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
- Jianqing Fan & Yuan Liao & Han Liu, 2016. "An overview of the estimation of large covariance and precision matrices," Econometrics Journal, Royal Economic Society, vol. 19(1), pages 1-32, February.
- Lam, Clifford, 2020. "High-dimensional covariance matrix estimation," LSE Research Online Documents on Economics 101667, London School of Economics and Political Science, LSE Library.
- Gillen, Benjamin J., 2014. "An empirical Bayesian approach to stein-optimal covariance matrix estimation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 402-420.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2015.
"Risks of large portfolios,"
Journal of Econometrics, Elsevier, vol. 186(2), pages 367-387.
- Jianqing Fan & Yuan Liao & Xiaofeng Shi, 2013. "Risks of Large Portfolios," Papers 1302.0926, arXiv.org.
- Fan, Jianqing & Liao, Yuan & Shi, Xiaofeng, 2013. "Risks of large portfolios," MPRA Paper 44206, University Library of Munich, Germany.
- Sven Husmann & Antoniya Shivarova & Rick Steinert, 2022. "Sparsity and stability for minimum-variance portfolios," Risk Management, Palgrave Macmillan, vol. 24(3), pages 214-235, September.
- Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
- Jianqing Fan & Yuan Liao & Martina Mincheva, 2013.
"Large covariance estimation by thresholding principal orthogonal complements,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
- Fan, Jianqing & Liao, Yuan & Mincheva, Martina, 2011. "Large covariance estimation by thresholding principal orthogonal complements," MPRA Paper 38697, University Library of Munich, Germany.
- Hautsch, Nikolaus & Voigt, Stefan, 2019.
"Large-scale portfolio allocation under transaction costs and model uncertainty,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 221-240.
- Hautsch, Nikolaus & Voigt, Stefan, 2017. "Large-scale portfolio allocation under transaction costs and model uncertainty," CFS Working Paper Series 582, Center for Financial Studies (CFS).
- Nikolaus Hautsch & Stefan Voigt, 2017. "Large-Scale Portfolio Allocation Under Transaction Costs and Model Uncertainty," Papers 1709.06296, arXiv.org, revised Jun 2018.
- Fan, Qingliang & Wu, Ruike & Yang, Yanrong & Zhong, Wei, 2024. "Time-varying minimum variance portfolio," Journal of Econometrics, Elsevier, vol. 239(2).
- Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2018.
"Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices,"
Working Paper Series of the Department of Economics, University of Konstanz
2018-07, Department of Economics, University of Konstanz.
- Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2020. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Working Paper series 20-03, Rimini Centre for Economic Analysis.
- Maurizio Daniele & Winfried Pohlmeier & Aygul Zagidullina, 2019. "Sparse Approximate Factor Estimation for High-Dimensional Covariance Matrices," Papers 1906.05545, arXiv.org.
- Wang, Hanchao & Peng, Bin & Li, Degui & Leng, Chenlei, 2021. "Nonparametric estimation of large covariance matrices with conditional sparsity," Journal of Econometrics, Elsevier, vol. 223(1), pages 53-72.
- Petukhina, Alla & Klochkov, Yegor & Härdle, Wolfgang Karl & Zhivotovskiy, Nikita, 2024. "Robustifying Markowitz," Journal of Econometrics, Elsevier, vol. 239(2).
- Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Sparsity and Stability for Minimum-Variance Portfolios," Papers 1910.11840, arXiv.org.
- Sven Husmann & Antoniya Shivarova & Rick Steinert, 2019. "Cross-validated covariance estimators for high-dimensional minimum-variance portfolios," Papers 1910.13960, arXiv.org, revised Oct 2020.
- Gianluca De Nard & Olivier Ledoit & Michael Wolf, 2018. "Factor models for portfolio selection in large dimensions: the good, the better and the ugly," ECON - Working Papers 290, Department of Economics - University of Zurich, revised Dec 2018.
- Kourtis, Apostolos & Dotsis, George & Markellos, Raphael N., 2012. "Parameter uncertainty in portfolio selection: Shrinking the inverse covariance matrix," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2522-2531.
More about this item
Keywords
Dynamic covariance matrix; MAMAR; Semiparametric estimation; Sparsity; Uniform consistency;All these keywords.
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ORE-2019-02-04 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1876. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.