(Translated by https://www.hiragana.jp/)
Tests of Common Stochastic Trends
IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/9902.html
   My bibliography  Save this paper

Tests of Common Stochastic Trends

Author

Abstract

This paper is concerned with tests in multivariate time series models made up of random walk (with drift) and stationary components. When the stationary component is white noise, a Lagrange multiplier test of the hypothesis that the covariance matrix of the disturbances driving the multivariate random walk is null is shown to be locally best invariant, something which does not automatically follow in the multivariate case. The main contribution of the paper is to propose a test of the validity of a specified value for the rank of the covariance matrix of the disturbances driving the multi-variate random walk. This rank is equal to the number of common trends, or levels, in the series. The test is very simple insofar as it does not require any models to be estimated, even if serial correlation is present. Its use with real data is illustrated in the context of a stochastic volatility model and the relationship with tests in the co-integration literature is discussed.

Suggested Citation

  • Nyblom, Jukka & Harvey, Andrew, 1999. "Tests of Common Stochastic Trends," Cambridge Working Papers in Economics 9902, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:9902
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Other versions of this item:

    More about this item

    Keywords

    Co-integration; Cramer-von Mises distribution; Locally best invariant test; Multivariate time series; Stochastic volatility; Structural time-series models; Unobserved components;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:9902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.