(Translated by https://www.hiragana.jp/)
An Exact Solution Method for Binary Equilibrium Problems with Compensation and the Power Market Uplift Problem
IDEAS home Printed from https://ideas.repec.org/p/diw/diwwpp/dp1475.html
   My bibliography  Save this paper

An Exact Solution Method for Binary Equilibrium Problems with Compensation and the Power Market Uplift Problem

Author

Listed:
  • Daniel Huppmann
  • Sauleh Siddiqui

Abstract

We propose a novel method to find Nash equilibria in games with binary decision variables by including compensation payments and incentive-compatibility constraints from non-cooperative game theory directly into an optimization framework in lieu of using first order conditions of a linearization, or relaxation of integrality conditions. The reformulation offers a new approach to obtain and interpret dual variables to binary constraints using the benefit or loss from deviation rather than marginal relaxations. The method endogenizes the trade-off between overall (societal) efficiency and compensation payments necessary to align incentives of individual players. We provide existence results and conditions under which this problem can be solved as a mixed-binary linear program. We apply the solution approach to a stylized nodal power-market equilibrium problem with binary on-off decisions. This illustrative example shows that our approach yields an exact solution to the binary Nash game with compensation. We compare different implementations of actual market rules within our model, in particular constraints ensuring non-negative profits (no-loss rule) and restrictions on the compensation payments to non-dispatched generators. We discuss the resulting equilibria in terms of overall welfare, efficiency, and allocational equity.

Suggested Citation

  • Daniel Huppmann & Sauleh Siddiqui, 2015. "An Exact Solution Method for Binary Equilibrium Problems with Compensation and the Power Market Uplift Problem," Discussion Papers of DIW Berlin 1475, DIW Berlin, German Institute for Economic Research.
  • Handle: RePEc:diw:diwwpp:dp1475
    as

    Download full text from publisher

    File URL: https://www.diw.de/documents/publikationen/73/diw_01.c.502751.de/dp1475.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    2. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    3. O'Neill, Richard P. & Sotkiewicz, Paul M. & Hobbs, Benjamin F. & Rothkopf, Michael H. & Stewart, William R., 2005. "Efficient market-clearing prices in markets with nonconvexities," European Journal of Operational Research, Elsevier, vol. 164(1), pages 269-285, July.
    4. Sioshansi, Ramteen, 2014. "Pricing in centrally committed electricity markets," Utilities Policy, Elsevier, vol. 31(C), pages 143-145.
    5. Xinmin Hu & Daniel Ralph, 2007. "Using EPECs to Model Bilevel Games in Restructured Electricity Markets with Locational Prices," Operations Research, INFORMS, vol. 55(5), pages 809-827, October.
    6. Von Stengel, Bernhard, 2002. "Computing equilibria for two-person games," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 3, chapter 45, pages 1723-1759, Elsevier.
    7. Koichi Nabetani & Paul Tseng & Masao Fukushima, 2011. "Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints," Computational Optimization and Applications, Springer, vol. 48(3), pages 423-452, April.
    8. Florian Leuthold & Hannes Weigt & Christian Hirschhausen, 2012. "A Large-Scale Spatial Optimization Model of the European Electricity Market," Networks and Spatial Economics, Springer, vol. 12(1), pages 75-107, March.
    9. Herbert E. Scarf, 1990. "Mathematical Programming and Economic Theory," Operations Research, INFORMS, vol. 38(3), pages 377-385, June.
    10. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    11. Sioshansi, Ramteen & Oren, Shmuel & O'Neill, Richard, 2010. "Three-part auctions versus self-commitment in day-ahead electricity markets," Utilities Policy, Elsevier, vol. 18(4), pages 165-173, December.
    12. David Avis & Gabriel Rosenberg & Rahul Savani & Bernhard Stengel, 2010. "Enumeration of Nash equilibria for two-player games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 42(1), pages 9-37, January.
    13. Sándor F. Tóth & Robert G. Haight & Luke W. Rogers, 2011. "Dynamic Reserve Selection: Optimal Land Retention with Land-Price Feedbacks," Operations Research, INFORMS, vol. 59(5), pages 1059-1078, October.
    14. Harker, Patrick T., 1991. "Generalized Nash games and quasi-variational inequalities," European Journal of Operational Research, Elsevier, vol. 54(1), pages 81-94, September.
    15. Nishimura, Kazuo & Friedman, James, 1981. "Existence of Nash Equilibrium in n Person Games without Quasi-Concavity," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 22(3), pages 637-648, October.
    16. S. Siddiqui & S. Gabriel, 2013. "An SOS1-Based Approach for Solving MPECs with a Natural Gas Market Application," Networks and Spatial Economics, Springer, vol. 13(2), pages 205-227, June.
    17. Baumol, William J & Bradford, David F, 1970. "Optimal Departures from Marginal Cost Pricing," American Economic Review, American Economic Association, vol. 60(3), pages 265-283, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huppmann, Daniel & Egerer, Jonas, 2015. "National-strategic investment in European power transmission capacity," European Journal of Operational Research, Elsevier, vol. 247(1), pages 191-203.
    2. Alexander Zerrahn & Daniel Huppmann, 2014. "Network Expansion to Mitigate Market Power: How Increased Integration Fosters Welfare," Discussion Papers of DIW Berlin 1380, DIW Berlin, German Institute for Economic Research.
    3. Alexander Zerrahn & Daniel Huppmann, 2017. "Network Expansion to Mitigate Market Power," Networks and Spatial Economics, Springer, vol. 17(2), pages 611-644, June.
    4. Ramteen Sioshansi and Ashlin Tignor, 2012. "Do Centrally Committed Electricity Markets Provide Useful Price Signals?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    5. Kasina, Saamrat & Hobbs, Benjamin F., 2020. "The value of cooperation in interregional transmission planning: A noncooperative equilibrium model approach," European Journal of Operational Research, Elsevier, vol. 285(2), pages 740-752.
    6. Bharat Adsul & Jugal Garg & Ruta Mehta & Milind Sohoni & Bernhard von Stengel, 2021. "Fast Algorithms for Rank-1 Bimatrix Games," Operations Research, INFORMS, vol. 69(2), pages 613-631, March.
    7. Steven Gabriel & Sauleh Siddiqui & Antonio Conejo & Carlos Ruiz, 2013. "Solving Discretely-Constrained Nash–Cournot Games with an Application to Power Markets," Networks and Spatial Economics, Springer, vol. 13(3), pages 307-326, September.
    8. David Fuller, J. & Çelebi, Emre, 2017. "Alternative models for markets with nonconvexities," European Journal of Operational Research, Elsevier, vol. 261(2), pages 436-449.
    9. Rahul Savani & Bernhard Stengel, 2015. "Game Theory Explorer: software for the applied game theorist," Computational Management Science, Springer, vol. 12(1), pages 5-33, January.
    10. David Pozo & Enzo Sauma & Javier Contreras, 2017. "Basic theoretical foundations and insights on bilevel models and their applications to power systems," Annals of Operations Research, Springer, vol. 254(1), pages 303-334, July.
    11. Camelo, Sergio & Papavasiliou, Anthony & de Castro, Luciano & Riascos, Álvaro & Oren, Shmuel, 2018. "A structural model to evaluate the transition from self-commitment to centralized unit commitment," Energy Economics, Elsevier, vol. 75(C), pages 560-572.
    12. Grimm, Veronika & Schewe, Lars & Schmidt, Martin & Zöttl, Gregor, 2017. "Uniqueness of market equilibrium on a network: A peak-load pricing approach," European Journal of Operational Research, Elsevier, vol. 261(3), pages 971-983.
    13. Bernhard von Stengel & Antoon van den Elzen & Dolf Talman, 2002. "Computing Normal Form Perfect Equilibria for Extensive Two-Person Games," Econometrica, Econometric Society, vol. 70(2), pages 693-715, March.
    14. Letícia Becher & Damián Fernández & Alberto Ramos, 2023. "A trust-region LP-Newton method for constrained nonsmooth equations under Hölder metric subregularity," Computational Optimization and Applications, Springer, vol. 86(2), pages 711-743, November.
    15. Alexey Izmailov & Mikhail Solodov, 2014. "On error bounds and Newton-type methods for generalized Nash equilibrium problems," Computational Optimization and Applications, Springer, vol. 59(1), pages 201-218, October.
    16. Devine, Mel T. & Siddiqui, Sauleh, 2023. "Strategic investment decisions in an oligopoly with a competitive fringe: An equilibrium problem with equilibrium constraints approach," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1473-1494.
    17. Bade, Sophie & Haeringer, Guillaume & Renou, Ludovic, 2007. "More strategies, more Nash equilibria," Journal of Economic Theory, Elsevier, vol. 135(1), pages 551-557, July.
    18. Migot, Tangi & Cojocaru, Monica-G., 2020. "A parametrized variational inequality approach to track the solution set of a generalized nash equilibrium problem," European Journal of Operational Research, Elsevier, vol. 283(3), pages 1136-1147.
    19. Le Cadre, Hélène & Mou, Yuting & Höschle, Hanspeter, 2022. "Parametrized Inexact-ADMM based coordination games: A normalized Nash equilibrium approach," European Journal of Operational Research, Elsevier, vol. 296(2), pages 696-716.
    20. Anna Schwele & Christos Ordoudis & Pierre Pinson & Jalal Kazempour, 2021. "Coordination of power and natural gas markets via financial instruments," Computational Management Science, Springer, vol. 18(4), pages 505-538, October.

    More about this item

    Keywords

    binary Nash game; non-cooperative equilibrium; compensation; incentive compatibility; electricity market; power market; uplift payments;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • L13 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Oligopoly and Other Imperfect Markets
    • L94 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Electric Utilities

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:diw:diwwpp:dp1475. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bibliothek (email available below). General contact details of provider: https://edirc.repec.org/data/diwbede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.