AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Engberg, Erik & Görg, Holger & Lodefalk, Magnus & Javed, Farrukh & Längkvist, Martin & Monteiro, Natália & Kyvik Nordås, Hildegunn & Pulito, Giuseppe & Schroeder, Sarah & Tang, Aili, 2023. "AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries," Working Papers 2023:13, Örebro University, School of Business.
- Engberg, Erik & Görg, Holger & Lodefalk, Magnus & Javed, Farrukh & Längkvist, Martin & Monteiro, Natália Pimenta & Kyvik Nordås, Hildegunn & Schroeder, Sarah & Tang, Aili, 2024. "AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries," IZA Discussion Papers 16717, Institute of Labor Economics (IZA).
- Erik Engberg & Holger Gorg & Magnus Lodefalk & Farrukh Javed & Martin Langkvist & Natalia Monteiro & Hildegunn Nordas & Giuseppe Pulito & Sarah Schroeder & Aili Tang, 2024. "AI Unboxed and Jobs: A Novel Measure and Firm-Level Evidence from Three Countries," RF Berlin - CReAM Discussion Paper Series 2414, Rockwool Foundation Berlin (RF Berlin) - Centre for Research and Analysis of Migration (CReAM).
References listed on IDEAS
- Daron Acemoglu & Pascual Restrepo, 2018. "The Race between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment," American Economic Review, American Economic Association, vol. 108(6), pages 1488-1542, June.
- Edward W. Felten & Manav Raj & Robert Seamans, 2018. "A Method to Link Advances in Artificial Intelligence to Occupational Abilities," AEA Papers and Proceedings, American Economic Association, vol. 108, pages 54-57, May.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Daron Acemoglu & David Autor & Jonathon Hazell & Pascual Restrepo, 2022.
"Artificial Intelligence and Jobs: Evidence from Online Vacancies,"
Journal of Labor Economics, University of Chicago Press, vol. 40(S1), pages 293-340.
- Acemoglu, Daron & Autor, David & Hazell, Jonathon & Restrepo, Pascual, 2022. "Artificial intelligence and jobs: evidence from online vacancies," LSE Research Online Documents on Economics 113325, London School of Economics and Political Science, LSE Library.
- Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021.
"Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence,"
The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
- Knaus, Michael C. & Lechner, Michael & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," IZA Discussion Papers 12039, Institute of Labor Economics (IZA).
- Lechner, Michael & Knaus, Michael C. & Strittmatter, Anthony, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," CEPR Discussion Papers 13402, C.E.P.R. Discussion Papers.
- Knaus, Michael C. & Lechner, Michael & anthony.strittmatter@unisg.ch, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Economics Working Paper Series 1817, University of St. Gallen, School of Economics and Political Science.
- Michael C. Knaus & Michael Lechner & Anthony Strittmatter, 2018. "Machine Learning Estimation of Heterogeneous Causal Effects: Empirical Monte Carlo Evidence," Papers 1810.13237, arXiv.org, revised Dec 2018.
- Gmyrek, Pawel, & Berg, Janine, & Bescond, David,, 2023. "Generative AI and jobs a global analysis of potential effects on job quantity and quality," ILO Working Papers 995324892702676, International Labour Organization.
- Jonathan M.V. Davis & Sara B. Heller, 2017. "Using Causal Forests to Predict Treatment Heterogeneity: An Application to Summer Jobs," American Economic Review, American Economic Association, vol. 107(5), pages 546-550, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pons Rotger, Gabriel & Rosholm, Michael, 2020. "The Role of Beliefs in Long Sickness Absence: Experimental Evidence from a Psychological Intervention," IZA Discussion Papers 13582, Institute of Labor Economics (IZA).
- Daniel Goller, 2023.
"Analysing a built-in advantage in asymmetric darts contests using causal machine learning,"
Annals of Operations Research, Springer, vol. 325(1), pages 649-679, June.
- Daniel Goller, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Papers 2008.07165, arXiv.org.
- Goller, Daniel, 2020. "Analysing a built-in advantage in asymmetric darts contests using causal machine learning," Economics Working Paper Series 2013, University of St. Gallen, School of Economics and Political Science.
- Michael C Knaus, 2022. "Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation]," The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Michael C Knaus, 2022.
"Double machine learning-based programme evaluation under unconfoundedness [Econometric methods for program evaluation],"
The Econometrics Journal, Royal Economic Society, vol. 25(3), pages 602-627.
- Knaus, Michael C., 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Economics Working Paper Series 2004, University of St. Gallen, School of Economics and Political Science.
- Knaus, Michael C., 2020. "Double Machine Learning Based Program Evaluation under Unconfoundedness," IZA Discussion Papers 13051, Institute of Labor Economics (IZA).
- Michael C. Knaus, 2020. "Double Machine Learning based Program Evaluation under Unconfoundedness," Papers 2003.03191, arXiv.org, revised Jun 2022.
- Fossen, Frank M. & McLemore, Trevor & Sorgner, Alina, 2024. "Artificial Intelligence and Entrepreneurship," IZA Discussion Papers 17055, Institute of Labor Economics (IZA).
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021.
"Active labour market policies for the long-term unemployed: New evidence from causal machine learning,"
Economics Working Paper Series
2108, University of St. Gallen, School of Economics and Political Science.
- Daniel Goller & Tamara Harrer & Michael Lechner & Joachim Wolff, 2021. "Active labour market policies for the long-term unemployed: New evidence from causal machine learning," Papers 2106.10141, arXiv.org, revised May 2023.
- Goller, Daniel & Harrer, Tamara & Lechner, Michael & Wolff, Joachim, 2021. "Active Labour Market Policies for the Long-Term Unemployed: New Evidence from Causal Machine Learning," IZA Discussion Papers 14486, Institute of Labor Economics (IZA).
- Ekaterina Prytkova & Fabien Petit & Deyu Li & Sugat Chaturvedi & Tommaso Ciarli, 2024.
"The Employment Impact of Emerging Digital Technologies,"
CEPEO Working Paper Series
24-01, UCL Centre for Education Policy and Equalising Opportunities, revised Feb 2024.
- Ekaterina Prytkova & Fabien Petit & Deyu Li & Sugat Chaturvedi & Tommaso Ciarli, 2024. "The Employment Impact of Emerging Digital Technologies," CESifo Working Paper Series 10955, CESifo.
- Evan D. Peet & Dana Schultz & Susan Lovejoy & Fuchiang (Rich) Tsui, 2023. "Variation in the infant health effects of the women, infants, and children program by predicted risk using novel machine learning methods," Health Economics, John Wiley & Sons, Ltd., vol. 32(1), pages 194-217, January.
- Albanesi, Stefania & Dias da Silva, Antonio & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023.
"New Technologies and Jobs in Europe,"
CEPR Discussion Papers
18220, C.E.P.R. Discussion Papers.
- Albanesi, Stefania & Da Silva, António Dias & Jimeno, Juan F. & Lamo, Ana & Wabitsch, Alena, 2023. "New technologies and jobs in Europe," Working Paper Series 2831, European Central Bank.
- Stefania Albanesi & António Dias da Silva & Juan F. Jimeno & Ana Lamo & Alena Wabitsch, 2023. "New Technologies and Jobs in Europe," NBER Working Papers 31357, National Bureau of Economic Research, Inc.
- Albanesi, Stefania & Silva, António Dias da & Jimeno, Juan F. & Lamo, Ana & Wabitsch, Alena, 2023. "New Technologies and Jobs in Europe," IZA Discussion Papers 16227, Institute of Labor Economics (IZA).
- Stefania Albanesi & António Dias da Silva & Juan F. Jimeno & Ana Lamo & Alena Wabitsch, 2023. "New technologies and jobs in Europe," Working Papers 2322, Banco de España.
- Strittmatter, Anthony, 2023. "What is the value added by using causal machine learning methods in a welfare experiment evaluation?," Labour Economics, Elsevier, vol. 84(C).
- Axenbeck, Janna & Berner, Anne & Kneib, Thomas, 2022. "What drives the relationship between digitalization and industrial energy demand? Exploring firm-level heterogeneity," ZEW Discussion Papers 22-059, ZEW - Leibniz Centre for European Economic Research.
- Nora Bearth & Michael Lechner, 2024. "Causal Machine Learning for Moderation Effects," Papers 2401.08290, arXiv.org, revised Apr 2024.
- Rafael Novella & David Rosas-Shady & Alfredo Alvarado, 2023.
"Are we nearly there yet? New technology adoption and labor demand in Peru,"
Science and Public Policy, Oxford University Press, vol. 50(4), pages 565-578.
- Novella, Rafael & Rosas-Shady, David & Alvarado, Alfredo, 2019. "Are We Nearly There Yet?: New Technology Adoption and Labor Demand in Peru," IDB Publications (Working Papers) 9765, Inter-American Development Bank.
- Michael Lechner & Jana Mareckova, 2022. "Modified Causal Forest," Papers 2209.03744, arXiv.org.
- Albanesi, Stefania & Da Silva, António Dias & Jimeno, Juan Francisco & Lamo, Ana & Wabitsch, Alena, 2023. "Reports of AI ending human labour may be greatly exaggerated," Research Bulletin, European Central Bank, vol. 113.
- Michael Lechner & Jana Mareckova, 2024. "Comprehensive Causal Machine Learning," Papers 2405.10198, arXiv.org.
- Achim Ahrens & Alessandra Stampi-Bombelli & Selina Kurer & Dominik Hangartner, 2023. "Optimal multi-action treatment allocation: A two-phase field experiment to boost immigrant naturalization," Papers 2305.00545, arXiv.org, revised Feb 2024.
- Evan D. Peet & Dana Schultz & Susan Lovejoy & Fuchiang (Rich) Tsui, 2024. "The infant health effects of doulas: Leveraging big data and machine learning to inform cost‐effective targeting," Health Economics, John Wiley & Sons, Ltd., vol. 33(6), pages 1387-1411, June.
- Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
- Yiyi Huo & Yingying Fan & Fang Han, 2023. "On the adaptation of causal forests to manifold data," Papers 2311.16486, arXiv.org, revised Dec 2023.
More about this item
Keywords
Artificial intelligence; Labour demand; Multi-country firm-level evidence;All these keywords.
JEL classification:
- E24 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Employment; Unemployment; Wages; Intergenerational Income Distribution; Aggregate Human Capital; Aggregate Labor Productivity
- J23 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Labor Demand
- J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
- N34 - Economic History - - Labor and Consumers, Demography, Education, Health, Welfare, Income, Wealth, Religion, and Philanthropy - - - Europe: 1913-
- O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BEC-2024-01-22 (Business Economics)
- NEP-EUR-2024-01-22 (Microeconomic European Issues)
- NEP-INO-2024-01-22 (Innovation)
- NEP-LMA-2024-01-22 (Labor Markets - Supply, Demand, and Wages)
- NEP-SBM-2024-01-22 (Small Business Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ratioi:0370. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Martin Korpi (email available below). General contact details of provider: https://edirc.repec.org/data/ratiose.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.