(Translated by https://www.hiragana.jp/)
Green Innovation And Economic Growth In A North-South Model
IDEAS home Printed from https://ideas.repec.org/p/ibt/wpaper/wp102018.html
   My bibliography  Save this paper

Green Innovation And Economic Growth In A North-South Model

Author

Listed:
  • Jan Witajewski-Baltvilks
  • Carolyn Fischer

Abstract

If one region of the world switches its research effort from dirty to clean technologies, will other regions follow? To investigate this question we built a North-South model that combines insights from directed technological change and quality ladder endogenous growth models. We allow researchers in the South to create business-stealing innovations. We found that (i) after the North switches from dirty to clean technologies, the growing value of clean markets will motivate technology firms in the South to follow the switch; however this result is conditional on the North being sufficiently large. (ii) If the two regions invest research effort to different sectors and the outputs of the two sectors are gross substitutes, then the long run growth rates in both regions are smaller than if the global research effort were to be invested in one sector. (iii) If the North switches to R&D in clean technologies, the benevolent central planner in the South would ensure that all South R&D switches too, unless the planner’s discount rate is high.

Suggested Citation

  • Jan Witajewski-Baltvilks & Carolyn Fischer, 2018. "Green Innovation And Economic Growth In A North-South Model," IBS Working Papers 10/2018, Instytut Badan Strukturalnych.
  • Handle: RePEc:ibt:wpaper:wp102018
    as

    Download full text from publisher

    File URL: http://ibs.org.pl//app/uploads/2019/01/IBS_Working_Paper_10_2018.pdf
    File Function: English Version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Aghion, Philippe & Howitt, Peter, 1992. "A Model of Growth through Creative Destruction," Econometrica, Econometric Society, vol. 60(2), pages 323-351, March.
    3. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    4. Gene M. Grossman & Elhanan Helpman, 1991. "Quality Ladders in the Theory of Growth," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(1), pages 43-61.
    5. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    6. Romer, Paul M, 1990. "Endogenous Technological Change," Journal of Political Economy, University of Chicago Press, vol. 98(5), pages 71-102, October.
    7. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    8. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    9. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    10. Jones, Charles I, 1995. "R&D-Based Models of Economic Growth," Journal of Political Economy, University of Chicago Press, vol. 103(4), pages 759-784, August.
    11. Mads Greaker & Tom-Reiel Heggedal, 2012. "A Comment on the Environment and Directed Technical Change," Discussion Papers 713, Statistics Norway, Research Department.
    12. Antoine Dechezleprêtre & Matthieu Glachant & Ivan Haščič & Nick Johnstone & Yann Ménière, 2011. "Invention and Transfer of Climate Change--Mitigation Technologies: A Global Analysis," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 5(1), pages 109-130, Winter.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jan Witajewski-Baltvilks & Marek Antosiewicz & Andrzej Ceglarz & Haris Doukas & Alexandros Nikas & Jakub Sawulski & Aleksander Szpor & Baiba Witajewska-Baltvilka, 2018. "Risks associated with the decarbonisation of the Polish power sector," IBS Research Reports 05/2018, Instytut Badan Strukturalnych.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Witajewski-Baltvilks & Carolyn Fischer, 2023. "Green Innovation and Economic Growth in a North–South Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 85(3), pages 615-648, August.
    2. Witajewski-Baltvilks, Jan & Verdolini, Elena & Tavoni, Massimo, 2017. "Induced technological change and energy efficiency improvements," Energy Economics, Elsevier, vol. 68(S1), pages 17-32.
    3. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    4. Peter K. Kruse-Andersen, 2019. "Directed Technical Change, Environmental Sustainability, and Population Growth," Discussion Papers 19-12, University of Copenhagen. Department of Economics.
    5. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    6. Jan Witajewski-Baltvilks & Elena Verdolini & Massimo Tavoni, 2015. "Directed Technological Change and Energy Efficiency Improvements," Working Papers 2015.78, Fondazione Eni Enrico Mattei.
    7. Acemoglu, Daron & Rafey, Will, 2023. "Mirage on the horizon: Geoengineering and carbon taxation without commitment," Journal of Public Economics, Elsevier, vol. 219(C).
    8. Kruse-Andersen, Peter Kjær, 2023. "Directed technical change, environmental sustainability, and population growth," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).
    9. Mare Sarr & Joëlle Noailly, 2017. "Innovation, Diffusion, Growth and the Environment: Taking Stock and Charting New Directions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 393-407, March.
    10. Hu, Hui & Qi, Shaozhou & Chen, Yuanzhi, 2023. "Using green technology for a better tomorrow: How enterprises and government utilize the carbon trading system and incentive policies," China Economic Review, Elsevier, vol. 78(C).
    11. Steven Bond‐Smith, 2022. "Discretely innovating: The effect of limited market contestability on innovation and growth," Scottish Journal of Political Economy, Scottish Economic Society, vol. 69(3), pages 301-327, July.
    12. Pegkas, Panagiotis & Staikouras, Christos & Tsamadias, Constantinos, 2019. "Does research and development expenditure impact innovation? Evidence from the European Union countries," Journal of Policy Modeling, Elsevier, vol. 41(5), pages 1005-1025.
    13. Segerstrom, Paul S, 2000. "The Long-Run Growth Effects of R&D Subsidies," Journal of Economic Growth, Springer, vol. 5(3), pages 277-305, September.
    14. Adriana Di Liberto, 2007. "Convergence and Divergence in Neoclassical Growth Models with Human Capital," Economia politica, Società editrice il Mulino, issue 2, pages 289-322.
    15. Jeon, Heesang, 2015. "Knowledge and Contemporary Capitalism in Light of Marx's Value Theory," Thesis Commons g5njk, Center for Open Science.
    16. Bloom, David E. et.al., 2013. "Economic impact of non-communicable disease in China and India: Estimates, projections and comparisons," Working Papers 300, Institute for Social and Economic Change, Bangalore.
    17. Gianluca Benigno & Luca Fornaro, 2018. "Stagnation Traps," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 85(3), pages 1425-1470.
    18. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    19. Ruiyang Hu & Yibai Yang & Zhijie Zheng, 2023. "Effects of subsidies on growth and welfare in a quality‐ladder model with elastic labor," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 25(5), pages 1096-1137, October.
    20. Angus Chu, 2010. "Effects of patent length on R&D: a quantitative DGE analysis," Journal of Economics, Springer, vol. 99(2), pages 117-140, March.

    More about this item

    Keywords

    directed technological change; green growth; endogenous growth model; cross-country spillovers; unilateral climate policy; green R&D subsidies;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O41 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - One, Two, and Multisector Growth Models
    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibt:wpaper:wp102018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: IBS (email available below). General contact details of provider: https://edirc.repec.org/data/ibswapl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.