Ia형 초신성
Ia형 초신성(Ia
자전 속도가 낮은 백색 왜성의 질량은 찬드라세카르 한계인 약 1.44 태양질량 이하로 물리적으로 제한된다.[1][2] 이것은 별이 전자 축퇴압으로 유지될 수 있는 최대한의 질량이다. 이 한계를 넘어서면 백색 왜성은 붕괴해 버린다. 만약 백색 왜성이 동반성의 질량을 점차적으로 뺏어온다면, 그 질량이 한계점에 가까워짐에 따라 백색 왜성의 핵이 탄소 연소를 일으킬 수 있는 발화 온도에 도달하게 된다는 것이 통설이다. 만약 백색 왜성이 다른 별과 하나로 합쳐진다면(매우 드문 경우), 그 온도는 핵융합 발화 온도보다 훨씬 뜨거워지고, 순간적으로 찬드라세카르 한계를 뛰어넘어 붕괴하기 시작한다. 핵융합이 일어나는 찰나의 순간동안 백색 왜성을 이루는 물질의 상당량이 열폭주 반응을 일으켜 1~2×1044 J 상당의 에너지를 방출한다.[3] 이 에너지는 별의 속박을 풀어 버리고 초신성 폭발을 일으키기에 충분한 양이다.[4]
강착 메커니즘을 통해 폭발하는 백색 왜성의 질량이 균일하기에, 이 종류의 초신성은 최고 광도가 일정하다고 알려져 있다. 이 값의 안정성 때문에, Ia형 초신성 폭발은 그 실시 등급이 주로 지구까지의 거리에 의해 결정되므로, 초신성이 속해 있는 모은하까지의 거리를 재는 척도로 사용된다. 하지만 2014년 1월 애리조나 대학의 연구팀에 의해 발견된 M82 은하에서 발견한 초신성은 그 가정을 부정하고 있어서 학계에서 관심을 끌고 있다.[5][6] 만약 이 광도의 일정성이 부정되면 허블 상수와 암흑 에너지의 양이 달라지고 결국 우주의 나이에 대한 계산까지 바뀌어야 한다.
형성 과정
[편집]단일 원형 항성 소멸
[편집]이 부류의 초신성이 만들어지는 과정에 대한 가설 중 하나는, 동반성 사이의 거리가 가까운 쌍성계에서 생겨난다는 것이다. 이 쌍성계는 처음에는 주계열성 두 개로 이루어져 있는데, 한쪽이 다른 쪽보다 질량이 더 크다. 질량이 큰 항성은 동반성보다 빨리 진화하여 점근거성가지에 도달하고, 항성의 외피가 급격히 부풀어오른다. 만약 두 항성의 외피가 하나로 합쳐진다면, 쌍성계는 상당량의 질량을 잃고, 각운동량과 궤도 반지름 및 주기도 줄어든다. 먼저 진화한 쪽이 백색 왜성으로 쭈그러들면, 이번에는 두 번째 항성이 적색 거성으로 진화하고, 두 번째 거성의 가스가 백색 왜성으로 질량 강착을 일으킬 무대가 마련된다. 이 최후의 외피 공유 단계동안, 두 항성은 각운동량을 잃으면서 소용돌이 모양으로 돌며 점점 가까워진다. 이렇게 작아진 궤도의 공전 주기는 수 시간 정도로 짧다.[7][8] 질량 강착이 계속되면서, 백색 왜성의 질량은 점점 늘어나 찬드라세카르 한계에 가까워진다.
궤도만 충분히 가깝다면, 백색 왜성은 준거성이나 주계열성에서도 질량을 빼앗을 수 있다. 이 강착 단계의 진화 과정은 아직 불분명한데, 이 진화 과정이 강착의 속도가 얼마나 큰지, 백색 왜성으로의 각운동량 이동이 얼마나 빨리 일어나는지에 달려 있기 때문이다.[9]
이런 종류의 Ia형 초신성은 전체 Ia형 초신성의 20%를 넘지 않는 것으로 보인다.[10]
이중 원형 항성 소멸
[편집]Ia형 초신성의 도화선에 불을 붙이는 다른 가능한 기작으로는, 백색 왜성 두 개가 합쳐져서 찬드라세카르 한계를 넘어버리는 경우가 있다. 합쳐진 결과물을 초찬드라세카르 질량(super-Chandrasekhar mass) 백색 왜성이라고 부른다.[11][12] 그러한 경우, 항성의 총 질량은 찬드라세카르 한계에 얽매이지 않는다.
우리 은하에서 단독성들끼리 충돌하는 사건은 107 ~ 1013년에 한 번 꼴로 일어나는데, 신성의 출현 빈도보다도 드문 수치이다.[13] 구상 성단의 조밀한 중심부에서는 훨씬 빈번하게 충돌이 일어난다.[14] (Cf. 청색 낙오성) 가장 충돌이 일어남직한 시나리오는 쌍성계의 두 별 사이, 혹은 백색 왜성을 가진 두 쌍성계 사이의 충돌이다. 충돌 결과로 백색 왜성 두 개로만 이루어진 근점쌍성이 형성될 수 있으며, 공전 궤도가 쇠퇴하면서 외피를 공유하게 되고, 하나로 합쳐지게 된다.[15] 그런데, 슬로운 전천 탐사(SDSS) 분광기로 4,000 개의 백색 왜성을 검사한 결과, 15개의 쌍성계를 발견했다. 계산 결과 우리 은하에서 백색 왜성 두 개가 합쳐지는 현상은 100년에 한 번 꼴로 일어나는데, 이 수치는 가까운 우주에서 발견되는 Ia형 초신성의 숫자와 안성맞춤 일치한다.[16]
초신성 SN 2003fg의 원형 항성은 이례적으로 질량이 큰데(2 태양질량), 이것을 이중 원형 항성 소멸 모형으로 설명할 수 있다.[17][18] 백색 왜성 한 개 짜리 모형으로는 도저히 설명이 불가능했던 초신성 SNR 0509-67.5는 이 이중 원형 원형 모형이 아니면 달리 설명할 길이 없다.[19] 동반성의 초신성 잔해가 발견되지 않는 SN 1006 역시 이중 원형 항성일 가능성이 매우 높다.[10] NASA의 스위프트 우주 망원경으로 지금까지 연구된 모든 Ia형 초신성을 다시 관측한 결과, 그 중 일부는 거성 또는 초신성 동반성이 없었다는 것이 밝혀졌다. 초거성 동반성이 외피를 날려버릴 때 엑스선이 방출되는데, 스위프트의 엑스선 망원경(XRT)이 초신성 잔해 53개를 관측한 결과, 이 엑스선이 발견되지 않았던 것이다. 또한 Ia형 초신성 12개를 폭발 10일여 동안 스위프트의 자외선 광학 망원경(UVOT)으로 관측한 결과, 초신성의 충격파가 가열된 동반성의 표면을 때렸을 때 발생해야 하는 자외선이 관측되지 않았다. 이것은 초신성의 원형 별 주위에 적색 거성같은 큰 항성이 존재하지 않았다는 것을 의미한다. SN 2011fe의 경우, 동반성이 만약 존재했다면, 그 크기는 태양보다도 작았을 것이다.[20] 찬드라 우주 망원경으로 5개 타원 은하와 안드로메다 은하의 팽대부에서 방출되는 엑스선을 관측한 결과, 엑스선이 예측했던 것보다 30 ~ 50배 정도 약했다. Ia형 초신성의 원형 별의 강착 원반에서 엑스선이 방출되므로, 엑스선이 이렇게 약하다는 것은 강착 원반을 형성한 백색 왜성이 적다는 것을 의미하며, 즉 Ia형 초신성을 설명하는 종래의 강착 원반 모형으로 설명이 불가능했다.[21] 나선을 그리며 서로를 향해 떨어져 내리는 한 쌍의 백색 왜성은 강력한 중력파 생성원임에 틀림없지만, 2012년 현재 이것을 검출할 수 있는 기술은 존재하지 않는다.
관측
[편집]Ia형 초신성은 모든 형태의 은하에서 발생하기에, 다른 형태의 초신성과 달리 타원 은하에서도 발견된다. Ia형 초신성은 항성이 형성되는 지역에서 더 많이 발생한다거나 하는 경향성을 보이지 않는다.[22] 백색왜성은 항성이 진화의 주계열에서 벗어나면서 만들어지기 때문에, 그 정도로 오래된 항성계는 원래 만들어진 장소를 벗어나 멀리 다른 곳에 있을 것이다. 그러고 나서 쌍성계는 Ia형 초신성이 폭발하기 위한 환경이 만족될 때까지 수백만 년 동안 질량 이동 단계를 거친다. 이 기간동안 계속해서 신성 폭발이 있을 수 있다.[23]
초신성의 원형(
광도곡선
[편집]Ia형 초신성은, 폭발 이후 시간에 따른 광도를 나타낸 그래프인, 광도곡선이 특징적으로 나타난다. 광도가 최댓값을 가질 때가 가까워지면 스펙트럼에 산소에서 칼슘에 이르는 중간 질량의 원자가 나타난다. 이 원자들은 항성의 외피층을 이루는 주된 구성 물질이다. 폭발하고 몇 달이 지나면 폭발한 외피층은 팽창하여 거의 투명해지고, 스펙트럼에는 항성의 핵을 이루는 무거운 물질의 빛이 지배적으로 나타난다. 이 물질은 주로 철과 질량이 비슷한 동위원소들이다. 니켈-56이 코발트-56을 거쳐 철-56으로 방사성 붕괴하는 과정에서 고에너지 광자가 방출된다.[25][28]
Ia형 초신성의 광도곡선의 폭과 최대밝기 사이의 상관관계를 이용하여 그래프를 보정하면 모든 광도곡선이 거의 일정하게 나타나게 된다.[25] 즉, 지금까지 발견된 모든 Ia형 초신성의 절대광도는 유사하며, 이 때문에 Ia형 초신성은 외부은하천문학에서 이차적인[29] 우주 거리 사다리로 사용될 수 있다.[30] 이렇게 광도곡선이 일정한 이유는 여전히 의문으로 남아 있다.
1998년, 멀리 떨어진 Ia형 초신성을 관측하다 우주가 가속팽창한다는 의도치 않은 결과를 얻게 되었다.[31][32][33][34] 이 우주의 가속팽창을 설명하기 위해 암흑 에너지 개념이 도입되었으며, 이것을 발견한 솔 펄머터, 브라이언 슈밋, 애덤 리스는 2011년 노벨 물리학상을 수상했다.[35]
같이 보기
[편집]각주
[편집]- ↑ Yoon, S.-C.; Langer, L. (2004). “Presupernova evolution of accreting white dwarfs with rotation”. 《Astronomy and Astrophysics》 (영어) 419 (2): 623. arXiv:astro-ph/0402287. Bibcode:2004A&A...419..623Y. doi:10.1051/0004-6361:20035822.
- ↑ Mazzali, P. A.; F. K. Röpke; S. Benetti; W. Hillebrandt (2007). “A common explosion mechanism for type Ia supernovae”. 《Science》 (영어) 315 (5813): 825–828. arXiv:astro-ph/0702351. Bibcode:2007Sci...315..825M. doi:10.1126/science.1136259. PMID 17289993.
- ↑ Khokhlov, A.; E. Mueller; P. Hoeflich (1993). “Light curves of Type IA supernova models with different explosion mechanisms”. 《Astronomy and Astrophysics》 270 (1–2): 223–248. Bibcode:1993A&A...270..223K.
- ↑ Staff (2006년 9월 7일). “Introduction to Supernova Remnants”. NASA Goddard/SAO. 2007년 5월 1일에 확인함.
- ↑ “우주 팽창, 가속도가 줄고 있다”. 《나우 뉴스》. 2015년 4월 14일. 2020년 5월 30일에 원본 문서에서 보존된 문서. 2015년 4월 14일에 확인함.
- ↑ Milne, Peter A.; Ryan J. Foley; Peter J. Brown; Gautham Narayan (2015년 4월 9일). “THE CHANGING FRACTIONS OF TYPE IA SUPERNOVA NUV-OPTICAL SUBCLASSES WITH REDSHIFT”. 《The Astrophysical Journal》. Vol 803. doi:10.1088/0004-637X/803/1/20. 2015년 11월 12일에 확인함.
- ↑ Paczynski, B. (1975년 8월 1일). 〈Common envelope binaries〉. 《Structure and Evolution of Close Binary Systems》 (영어). Cambridge, England: Dordrecht, D. Reidel Publishing Co. 75–80쪽. Bibcode:1976IAUS...73...75P.
- ↑ Postnov, Konstantin A.; Lev R. Yungelson (2014). “The evolution of compact binary star systems”. 《Living Reviews in Relativity》 (영어) 17: 3. arXiv:1403.4754. doi:10.12942/lrr-2014-3.
- ↑ Langer, N.; S.-C. Yoon; S. Wellstein; S. Scheithauer (2002). 〈On the evolution of interacting binaries which contain a white dwarf〉. Gänsicke, B. T.; Beuermann, K.; Rein, K. 《The Physics of Cataclysmic Variables and Related Objects, ASP Conference Proceedings》 (영어). San Francisco, California: Astronomical Society of the Pacific. 252쪽. Bibcode:2002ASPC..261..252L.
- ↑ 가 나 González Hernández, J. I.; Ruiz-Lapuente, P.; Tabernero, H. M.; Montes, D.; Canal, R.; Méndez, J.; Bedin, L. R. (2012). "No surviving evolved companions of the progenitor of SN 1006". Nature 489 (7417): 533–536. doi:[dx.doi.org/10.1038%2Fnature11447 10.1038/nature11447]. PMID 23018963.
- ↑ Staff. “Type Ia Supernova Progenitors”. Swinburne University. 2007년 5월 20일에 확인함.
- ↑ “Brightest supernova discovery hints at stellar collision” (영어). New Scientist. 2007년 1월 3일. 2007년 1월 6일에 원본 문서에서 보존된 문서. 2007년 1월 6일에 확인함.
- ↑ Whipple, Fred L. (1939). “Supernovae and stellar collisions”. 《Proceedings of the National Academy of Sciences of the United States of America》 (영어) 25 (3): 118–125. Bibcode:1939PNAS...25..118W. doi:10.1073/pnas.25.3.118.
- ↑ Rubin, V. C.; Ford, W. K. J. (1999). “A Thousand Blazing Suns: The Inner Life of Globular Clusters”. 《Mercury》 (영어) 28: 26. 2006년 5월 21일에 원본 문서에서 보존된 문서. 2006년 6월 2일에 확인함.
- ↑ Middleditch, J. (2004). “A White Dwarf Merger Paradigm for Supernovae and Gamma-Ray Bursts”. 《The Astrophysical Journal》 (영어) 601 (2): L167–L170. arXiv:astro-ph/0311484. Bibcode:2003astro.ph.11484M. doi:10.1086/382074.
- ↑ “Important Clue Uncovered for the Origins of a Type of Supernovae Explosion, Thanks to a Research Team at the University of Pittsburgh” (영어). University of Pittsburgh. 2012년 3월 8일에 원본 문서에서 보존된 문서. 2012년 3월 23일에 확인함.
- ↑ “The Weirdest Type Ia Supernova Yet” (영어). Lawrence Berkeley National Laboratory. 2006년 9월 20일. 2017년 10월 8일에 원본 문서에서 보존된 문서. 2006년 11월 2일에 확인함.
- ↑ “Bizarre Supernova Breaks All The Rules” (영어). New Scientist. 2006년 9월 20일. 2007년 5월 9일에 원본 문서에서 보존된 문서. 2007년 1월 8일에 확인함.
- ↑ Schaefer, Bradley E.; Ashley Pagnotta (2012). “An absence of ex-companion stars in the type Ia supernova remnant SNR 0509-67.5”. 《Nature》 (영어) 481 (7380): 164–166. Bibcode:2012Natur.481..164S. doi:10.1038/nature10692.
- ↑ “NASA'S Swift Narrows Down Origin of Important Supernova Class”. NASA. 2020년 6월 12일에 원본 문서에서 보존된 문서. 2012년 3월 24일에 확인함.
- ↑ “NASA's Chandra Reveals Origin of Key Cosmic Explosions” (영어). Chandra X-Ray Observatory. 2012년 3월 28일에 확인함.
- ↑ van Dyk, Schuyler D. (1992). “Association of supernovae with recent star formation regions in late type galaxies”. 《Astronomical Journal》 (영어) 103 (6): 1788–1803. Bibcode:1992AJ....103.1788V. doi:10.1086/116195.
- ↑ Langer, N.; A. Deutschmann; S. Wellstein; P. Höflich (1999). “The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae”. 《Astronomy and Astrophysics》 (영어) 362: 1046–1064. arXiv:astro-ph/0008444. Bibcode:2000astro.ph..8444L.
- ↑ Kotak, R. (2008년 12월). 〈RS Ophiuchi (2006) and the Recurrent Nova Phenomenon, proceedings of the conference held 12–14 June 2007〉. Keele University, Keele, United Kingdom에서 작성. A. Evans; M. F. Bode; T. J. O'Brien; M. J. Darnley. 《Progenitors of Type Ia Supernovae》. ASP Conference Series (영어) 401. San Francisco: Astronomical Society of the Pacific, 2008. 150쪽. Bibcode:2008ASPC..401..150K.
- ↑ 가 나 다 임명신 (2011년 12월). “제Ia형 초신성과 우주 폭발 현상들” (PDF). 《물리학과 첨단기술》 (한국물리학회): 9~13. doi:10.3938/PhiT.20.055. 2014년 7월 14일에 원본 문서 (pdf)에서 보존된 문서. 2012년 8월 14일에 확인함.
- ↑ Nugent, Peter E.; Sullivan, Mark; Cenko, S. Bradley; Thomas, Rollin C.; Kasen, Daniel; Howell, D. Andrew; Bersier, David; Bloom, Joshua S.; Kulkarni, S. R. (2011년 12월). “Supernova 2011fe from an Exploding Carbon-Oxygen White Dwarf Star”. 《Nature》 480: 344–347. Bibcode:2011Natur.480..344N. doi:10.1038/nature10644.
- ↑ Dilday, B.; 외. (2012). “PTF11kx: A Type-Ia Supernova with a Symbiotic Nova Progenitor” (영어). arXiv:1207.1306.
- ↑ Hillebrandt, W.; Niemeyer, J. C. (2000). “Type IA Supernova Explosion Models”. 《Annual Review of Astronomy and Astrophysics》 (영어) 38 (1): 191~230. arXiv:astro-ph/0006305. Bibcode:2000ARA&A..38..191H. doi:10.1146/annurev.astro.38.1.191.
- ↑ Macri, L. M.; K. Z. Stanek; D. Bersier; L. J. Greenhill; M. J. Reid (2006). “A new Cepheid distance to the maser-host galaxy NGC 4258 and its implications for the Hubble constant”. 《Astrophysical Journal》 (영어) 652 (2): 1133–1149. arXiv:astro-ph/0608211. Bibcode:2006ApJ...652.1133M. doi:10.1086/508530.
- ↑ Colgate, S. A. (1979). “Supernovae as a standard candle for cosmology”. 《Astrophysical Journal》 232 (1): 404–408. Bibcode:1979ApJ...232..404C. doi:10.1086/157300.
- ↑ Perlmutter, S.; Goldhaber, G.; Knop, R. A.; Nugent, P.; Castro, P. G.; Deustua, S.; Fabbro, S.; Goobar, A. (1999). “Measurements of Omega and Lambda from 42 high redshift supernovae”. 《Astrophysical Journal》 517 (2): 565–86. arXiv:astro-ph/9812133. Bibcode:1999ApJ...517..565P. doi:10.1086/307221.
- ↑ Riess, Adam G.; Challis, Peter; Clocchiatti, Alejandro; Diercks, Alan; Garnavich, Peter M.; Gilliland, Ron L.; Hogan, Craig J.; Jha, Saurabh (1998). “Observational evidence from supernovae for an accelerating Universe and a cosmological constant”. 《Astronomical Journal》 (영어) 116 (3): 1009–38. arXiv:astro-ph/9805201. Bibcode:1998AJ....116.1009R. doi:10.1086/300499.
- ↑ Leibundgut, B.; J. Sollerman (2001). “A cosmological surprise: the universe accelerates”. 《Europhysics News》 (영어) 32 (4): 121. Bibcode:2001ENews..32..121L. doi:10.1051/epn:2001401. 2007년 2월 1일에 확인함.
- ↑ “Confirmation of the accelerated expansion of the Universe”. Centre National de la Recherche Scientifique. 2003년 9월 19일. 2006년 11월 3일에 확인함.
- ↑ 이명균 (2011년 12월). “2011년 노벨물리학상:슈퍼스타와 우주 가속팽창의 발견” (PDF). 《물리학과 첨단기술》 (한국물리학회): 2~8. doi:10.3938/PhiT.20.054. 2014년 7월 14일에 원본 문서 (pdf)에서 보존된 문서. 2012년 8월 14일에 확인함.
외부 링크
[편집]- Falck, Bridget (2006). “Type Ia Supernova Cosmology with ADEPT”. Johns Hopkins University. 2007년 10월 30일에 원본 문서에서 보존된 문서. 2007년 5월 20일에 확인함.
- Staff (2007년 2월 27일). “Sloan Supernova Survey”. Sloan Digital Sky Survey. 2007년 5월 25일에 확인함.
- “Novae and Supernovae”. peripatus.gen.nz. 2007년 8월 15일에 원본 문서에서 보존된 문서. 2007년 5월 25일에 확인함.
- “Source for major type of supernova”. Pole Star Publications Ltd. 2003년 8월 6일. 2007년 11월 25일에 확인함. (A Type Ia progenitor found)
- “Novae and Supernovae explosions found”. peripatus.gen.nz. 2007년 8월 15일에 원본 문서에서 보존된 문서. 2007년 5월 25일에 확인함.