(Translated by https://www.hiragana.jp/)
Riemannian immersion (Rev #11, changes) in nLab

nLab Riemannian immersion (Rev #11, changes)

Showing changes from revision #10 to #11: Added | Removed | Changed

Contents

Idea

A Riemannian immersion or isometric immersion of Riemannian manifolds is an immersion ΣしぐまX\Sigma \hookrightarrow X of their underlying smooth manifolds which is also an isometry with respect to their Riemannian metrics.

Similarly, an isometric embedding is an isometric immersion which is also an embedding of smooth manifolds, hence of the underlying topological spaces.

The isometric immersion/embedding problem is to find isometric immersions/embeddings of Riemannian manifolds into large-dimensional but flat (Euclidean) spaces (e.g. Han & Hong 2006, Han & Lewicka 2023).

Properties

Adapted Darboux (co-)frames

Given a Riemannian manifold (X,g)(X,g) of dimension DD, then

  • an orthonormal local frame is an open cover p:X^Xp \colon \widehat{X} \twoheadrightarrow X equipped with a DD-tuple of vector fields

    V: DTX^ V \;\colon\; \mathbb{R}^{D} \xrightarrow{\;\;} T \widehat X

    such that at each point x^X^\widehat x \,\in\, \widehat{X} we have that

    g(V,V)(x) g\big(V,V\big)(x)

    is the canonical inner product on D\mathbb{R}^D, hence in components

    g(V a,V b)(x)=δでるた ab; g\big(V_a, V_b\big)(x) \;=\; \delta_{a b} \,;
  • an orthonormal local co-frame is an open cover p:X^Xp \colon \widehat{X} \twoheadrightarrow X equipped with a D\mathbb{R}^D-valued differential 1-form

    E:TX^ D E \;\colon\; T\widehat{X} \xrightarrow{\;\;} \mathbb{R}^D

    such that at each point x^X^\widehat x \,\in\, \widehat{X} we have

    δでるた abE aE b=g. \delta_{a b} \, E^a \otimes E^b \;=\; g \,.

Now given moreover an immersion ϕ:ΣしぐまX\phi \colon \Sigma \hookrightarrow X into a Riemannian manifold

\begin{remark} \label{DarbouxCoFramePullingBackToCoframeOnImmersedManifold} The Darboux co-frame property (2) immediately implies that the pullback of the remaining frame components

e(e aϕ *E a) adim(Σしぐま) e \;\coloneqq\; \big( e^a \;\coloneqq\; \phi^\ast E^a \big)_{ a \leq dim(\Sigma) }

is a local frame on Σしぐま\Sigma. We may summarize this by saying that a local Darboux co-frame EE gives

(3)ϕ *E a={e a foradim(Σしぐま) 0 foradim(Σしぐま). \phi^\ast E^a \;=\; \left\{ \begin{array}{ll} e^a & \text{for}\; a \leq dim(\Sigma) \\ 0 & \text{for}\; a \geq dim(\Sigma) \,. \end{array} \right.

(cf. Griffiths & Harris 1979 (1.13)).

Incidentally, this situation (3) of Darboux co-frames, when applied to the bosonic coframe components of super spacetimes, has later independently come to be known as the “embedding condition” in the “super-embedding approach” to super p-branes &;brack;Bandos 2011 (2.6-2.9); Bandos & Sorokin 2023 (5.13-14)], strenghtening the original “geometrodynamical condition” of Bandos et al. 1995 (2.23), which is just the first condition in (3). \end{remark}

\begin{proposition} \label{ExistenceOfDarbouxFrames} Given an immersion into a Riemannian manifold, local Darboux (co-)frames always exist. \end{proposition} \begin{proof} Given an immersion ιいおた:ΣしぐまX\iota \colon \Sigma \to X, consider any point σしぐまΣしぐま\sigma \in \Sigma. Since the immersion is locally an embedding (see here), there exists an open neighbourhood σしぐまUΣしぐま \sigma \in U \subset \Sigma such that ϕ |U:UX\phi_{\vert U} \colon U \to X is the embedding of a submanifold. Therefore (by this Prop.) there exists an open neighbourhood UXU' \subset X of ιいおた(σしぐま)X\iota(\sigma) \in X which serves as a coordinate chart XUϕ nX \supset U' \xrightarrow{\phi} \mathbb{R}^n for XX and a slice chart for ΣしぐまX\Sigma \subset X in that it exhibits ΣしぐまU\Sigma \cap U' as a rectilinear hyperplane in ϕ(U) n\phi(U') \subset \mathbb{R}^n.

Hence in this slice coordinate chart a local frame for XX is given by the nn canonical coordinate vector fields on with the first kk of them forming a local chart of Σしぐま\Sigma

{ 1,, k}{ 1,, k, k+1,, n}. \big\{ \partial_1, \cdots, \partial_{k} \big\} \hookrightarrow \big\{ \partial_1, \cdots, \partial_{k}, \, \partial_{k+1}, \cdots, \partial_n \big\} \,.

From this local frame the Gram-Schmidt process produces an orthonormal frame, first for Σしぐま\Sigma and then extended to XX:

{v 1,,v k}{v 1,,v k,v k+1,,v n},g(v a,v b)=δでるた ab \big\{ v_1, \cdots, v_{k} \big\} \hookrightarrow \big\{ v_1, \cdots, v_{k}, \, v_{k+1}, \cdots, v_n \big\} \,, \;\;\; g(v_a, v_b) = \delta_{a b} \,

This demonstrates the esistence of orthonormal local frames (cf. Kayban 2021, Prop. 3.1).

To obtain an orthonormal local coframe we just dualize this local frame:

By construction, the matrix (v a μみゅー) a,μみゅー\big(v_a^\mu\big)_{a,\mu} of components of the above frame (given by v a μみゅー μみゅー=v av_a^\mu \partial_\mu = v_a) is block diagonal (the upper diagonal block being the local frame on Σしぐま\Sigma).

This means (cf. e.g. here) that also the inverse matrix

(e μみゅー a) μみゅー,a((v a μみゅー) μみゅー,a) 1 \big(e^a_\mu\big)_{\mu,a} \,\coloneqq\, \Big(\big(v_a^\mu\big)_{\mu,a}\Big)^{-1}

is block diagonal, with its upper diagonal block being the inverse matrix of the original upper left block.

This gives the desired coframe field:

e ae μみゅー adx μみゅー e^{a} \,\coloneqq\, e^a_\mu \, \mathrm{d}x^\mu

which is orthonormal on XX

e ae a=g(,) e^a \otimes e_a \;=\; g(-,-)

because

v a μみゅーg μみゅーνにゅーv b νにゅー=δでるた abg μみゅーνにゅー=e μみゅー aδでるた abe νにゅー b. v_a^\mu g_{\mu \nu} v_b^\nu \;=\; \delta_{a b} \;\;\;\; \Leftrightarrow \;\;\;\; g_{\mu \nu} \;=\; e^a_\mu \delta_{a b} e^b_\nu \,.

and which is Darboux by the block-diagonal structure of (e μみゅー a)\big(e^a_\mu\big). \end{proof}

(For the further generality of sequences of Darboux frames for suitable sequences of immersions, see Giron 2020 and Chen & Giron 2021, Thm. 2.2.)

Hence an immersion ιいおた:ΣしぐまX\iota \colon \Sigma \hookrightarrow X of Riemannian manifolds is isometric iff around each point ιいおた(σしぐま)\iota(\sigma) any of its Darboux coframe fields pull back to locally induce the given metric on Σしぐま\Sigma.

References

  • Élie Cartan (translated by Vladislav Goldberg from Cartan’s lectures at the Sorbonne in 1926–27): Part E of: Riemannian Geometry in an Orthogonal Frame, World Scientific (2001) [[doi:10.1142/4808](https://doi.org/10.1142/4808), pdf]

  • Shlomo Sternberg, Lectures on differential geometry, Prentice-Hall (1964), AMS (1983) [ISBNJ:978-0-8218-1385-0, ams:chel-316, ark:/13960/t1pg9dv6k]

  • Heinrich W. Guggenheimer, Differential Geometry, Dover (1977) [[isbn:9780486634333](https://store.doverpublications.com/products/9780486634333), ark:/13960/t9t22sk9n]

  • Phillip Griffiths, Joseph Harris, Algebraic geometry and local differential geometry, Annales scientifiques de l’École Normale Supérieure, Serie 4, Volume 12 no. 3 (1979) 355-452 [[numdam:ASENS_1979_4_12_3_355_0](http://www.numdam.org/item/?id=ASENS_1979_4_12_3_355_0)]

  • Eric Berger, Robert Bryant, Phillip Griffiths, The Gauss equations and rigidity of isometric embeddings, Duke Math. J. 50 3 (1983) 803-892 [[doi:10.1215/S0012-7094-83-05039-1](http://dx.doi.org/10.1215/S0012-7094-83-05039-1)]

  • Ahmad Zandi, Minimal immersions of surfaces in quaternionic projective space, Tsukuba Journal of Mathematics 12 2 (1988) 423-440 [[jstor:43686661](https://www.jstor.org/stable/43686661)]

  • Qing Han, Jia-Xing Hong: Isometric Embedding of Riemannian Manifolds in Euclidean Spaces, Mathematical Surveys and Monographs 130, AMS (2006) [[ISBN:0821840711](https://maa.org/press/maa-reviews/isometric-embedding-of-riemannian-manifolds-in-euclidean-spaces)]

  • Paolo Mastrolia, Marco Rigoli, Alberto G. Setti, §1.3 Some formulas for immersed submanifolds in: Yamabe-type Equations on Complete, Noncompact Manifolds, Birkhäuser (2012) [[doi:10.1007/978-3-0348-0376-2](https://doi.org/10.1007/978-3-0348-0376-2)]

  • Tristan Pierre Giron, On the Analysis of Isometric Immersions of Riemannian Manifolds, PhD thesis (2020) [[uuid:cae2f41d-c5a1-4138-9dec-5e824d21044e](https://ora.ox.ac.uk/objects/uuid:cae2f41d-c5a1-4138-9dec-5e824d21044e), pdf]

  • Gui-Qiang G. Chen, Tristan P. Giron, Weak continuity of curvature for connections in L pL^p [[arXiv:2108.13529](https://arxiv.org/abs/2108.13529)]

  • Nicholas Kayban, Riemannian Immersions and Submersions (2021) [[pdf](https://www.math.uwaterloo.ca/~karigian/training/M11-kayban-final-project.pdf), pdf]

  • Qing Han, Marta Lewicka, Isometric immersions and applications, Notices of the AMS 2023 [[arXiv:2310.02566](https://arxiv.org/abs/2310.02566)]

Revision on May 18, 2024 at 11:40:00 by Urs Schreiber See the history of this page for a list of all contributions to it.