OFFSET
0,1
COMMENTS
Least significant bit of n, lsb(n).
Also decimal expansion of 1/99.
Also the binary expansion of 1/3. - Robert G. Wilson v, Sep 01 2015
Characteristic function of odd numbers: a(A005408(n)) = 1, a(A005843(n)) = 0. - Reinhard Zumkeller, Sep 29 2008
A102370(n) modulo 2. - Philippe Deléham, Apr 04 2009
Base b expansion of 1/(b^2-1) for any b >= 2 is 0.0101... (A005563 has b^2-1). - Rick L. Shepherd, Sep 27 2009
Let A be the Hessenberg n X n matrix defined by: A[1,j] = j mod 2, A[i,i] := 1, A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,1). - Milan Janjic, Jan 24 2010
From R. J. Mathar, Jul 15 2010: (Start)
The sequence is the principal Dirichlet character of the reduced residue system mod 2 or mod 4 or mod 8 or mod 16 ...
Associated Dirichlet L-functions are for example L(2,chi) = Sum_{n>=1} a(n)/n^2 == A111003,
or L(3,chi) = Sum_{n>=1} a(n)/n^3 = 1.05179979... = 7*A002117/8,
or L(4,chi) = Sum_{n>=1} a(n)/n^4 = 1.014678... = A092425/96. (End)
Also parity of the nonnegative integers A001477. - Omar E. Pol, Jan 17 2012
a(n) = (4/n), where (k/n) is the Kronecker symbol. See the Eric Weisstein link. - Wolfdieter Lang, May 28 2013
Also the inverse binomial transform of A131577. - Paul Curtz, Nov 16 2016 [an observation forwarded by Jean-François Alcover]
The emanation sequence for the globe category. That is take the globe category, take the corresponding polynomial comonad, consider its carrier polynomial as a generating function, and take the corresponding sequence. - David Spivak, Sep 25 2020
For n > 0, a(n) is the alternating sum of the product of n increasing and n decreasing odd factors. For example, a(4) = 1*7 - 3*5 + 5*3 - 7*1 and a(5) = 1*9 - 3*7 + 5*5 - 7*3 + 9*1. - Charlie Marion, Mar 24 2022
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Wasserman, Table of n, a(n) for n = 0..1000
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
Clark Kimberling, A Combinatorial Classification of Triangle Centers on the Line at Infinity, J. Int. Seq., Vol. 22 (2019), Article 19.5.4.
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Eric Weisstein's World of Mathematics, Dirichlet Series Generating Function
Eric Weisstein's World of Mathematics, Kronecker Symbol
A. K. Whitford, Binet's Formula Generalized, Fibonacci Quarterly, Vol. 15, No. 1, 1979, pp. 21, 24, 29
Index entries for linear recurrences with constant coefficients, signature (0,1).
FORMULA
a(n) = (1 - (-1)^n)/2.
a(n) = n mod 2.
a(n) = 1 - a(n-1).
Multiplicative with a(p^e) = p mod 2. - David W. Wilson, Aug 01 2001
G.f.: x/(1-x^2). E.g.f.: sinh(x). - Paul Barry, Mar 11 2003
a(n) = ceiling((-2)^(-n-1)). - Reinhard Zumkeller, Apr 19 2005
Dirichlet g.f.: (1-1/2^s)*zeta(s). - R. J. Mathar, Mar 04 2011
a(n) = ceiling(n/2) - floor(n/2). - Arkadiusz Wesolowski, Sep 16 2012
a(n) = ceiling( cos(Pi*(n-1))/2 ). - Wesley Ivan Hurt, Jun 16 2013
a(n) = floor((n-1)/2) - floor((n-2)/2). - Mikael Aaltonen, Feb 26 2015
Dirichlet g.f.: L(chi(2),s) with chi(2) the principal Dirichlet character modulo 2. - Ralf Stephan, Mar 27 2015
a(n) = 0^^n = 0^(0^(0...)) (n times), where we take 0^0 to be 1. - Natan Arie Consigli, May 02 2015
Euler transform and inverse Moebius transform of length 2 sequence [0, 1]. - Michael Somos, Feb 20 2024
EXAMPLE
G.f. = x + x^3 + x^5 + x^7 + x^9 + x^11 + x^13 + x^15 + ... - Michael Somos, Feb 20 2024
MAPLE
A000035 := n->n mod 2;
[ seq(i mod 2, i=0..100) ];
MATHEMATICA
PadLeft[{}, 110, {0, 1}] (* Harvey P. Dale, Sep 25 2011 *)
PROG
(PARI) a(n)=n%2;
(PARI) a(n)=direuler(p=1, 100, if(p==2, 1, 1/(1-X)))[n] /* Ralf Stephan, Mar 27 2015 */
(Haskell)
a000035 n = n `mod` 2 -- James Spahlinger, Oct 08 2012
(Haskell)
a000035_list = cycle [0, 1] -- Reinhard Zumkeller, Jan 06 2012
(Maxima) A000035(n):=mod(n, 2)$
makelist(A000035(n), n, 0, 30); /* Martin Ettl, Nov 12 2012 */
(Scheme) (define (A000035 n) (mod n 2)) ;; For R6RS. Use modulo in older Schemes like MIT/GNU Scheme. - Antti Karttunen, Mar 21 2017
(Python)
def A000035(n): return n & 1 # Chai Wah Wu, May 25 2022
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved