(Translated by https://www.hiragana.jp/)
A000161 - OEIS
login
A000161
Number of partitions of n into 2 squares.
64
1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 2, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 2, 1, 0, 0, 1, 0, 1, 0
OFFSET
0,26
COMMENTS
Number of ways of writing n as a sum of 2 (possibly zero) squares when order does not matter.
Number of similar sublattices of square lattice with index n.
Let Pk = the number of partitions of n into k nonzero squares. Then we have A000161 = P0 + P1 + P2, A002635 = P0 + P1 + P2 + P3 + P4, A010052 = P1, A025426 = P2, A025427 = P3, A025428 = P4. - Charles R Greathouse IV, Mar 08 2010, amended by M. F. Hasler, Jan 25 2013
a(A022544(n))=0; a(A001481(n))>0; a(A125022(n))=1; a(A118882(n))>1. - Reinhard Zumkeller, Aug 16 2011
REFERENCES
J. V. Uspensky and M. A. Heaslet, Elementary Number Theory, McGraw-Hill, NY, 1939, p. 339
LINKS
B. K. Agarwala and F. C. Auluck, Statistical mechanics and partitions into non-integral powers of integers, Proc. Camb. Phil. Soc., 47 (1951), 207-216. [Annotated scanned copy]
R. T. Bumby, Sums of four squares, in Number theory (New York, 1991-1995), 1-8, Springer, New York, 1996.
J. H. Conway, E. M. Rains and N. J. A. Sloane, On the existence of similar sublattices, Canad. J. Math. 51 (1999), 1300-1306 (Abstract, pdf, ps).
E. Grosswald, Representations of Integers as Sums of Squares, Springer-Verlag, NY, 1985, p. 84.
M. D. Hirschhorn, Some formulas for partitions into squares, Discrete Math, 211 (2000), pp. 225-228. [From Ant King, Oct 05 2010]
FORMULA
a(n) = card { { a,b } c N | a^2+b^2 = n }. - M. F. Hasler, Nov 23 2007
Let f(n)= the number of divisors of n that are congruent to 1 modulo 4 minus the number of its divisors that are congruent to 3 modulo 4, and define delta(n) to be 1 if n is a perfect square and 0 otherwise. Then a(n)=1/2 (f(n)+delta(n)+delta(1/2 n)). - Ant King, Oct 05 2010
EXAMPLE
25 = 3^2+4^2 = 5^2, so a(25) = 2.
MAPLE
A000161 := proc(n) local i, j, ans; ans := 0; for i from 0 to n do for j from i to n do if i^2+j^2=n then ans := ans+1 fi od od; RETURN(ans); end; [ seq(A000161(i), i=0..50) ];
A000161 := n -> nops( numtheory[sum2sqr](n) ); # M. F. Hasler, Nov 23 2007
MATHEMATICA
Length[PowersRepresentations[ #, 2, 2]] &/@Range[0, 150] (* Ant King, Oct 05 2010 *)
PROG
(PARI) a(n)=sum(i=0, n, sum(j=0, i, if(i^2+j^2-n, 0, 1))) \\ for illustrative purpose
(PARI) A000161(n)=sum(k=sqrtint((n-1)\2)+1, sqrtint(n), issquare(n-k^2)) \\ Charles R Greathouse IV, Mar 21 2014, improves earlier code by M. F. Hasler, Nov 23 2007
(PARI) A000161(n)=#sum2sqr(n) \\ See A133388 for sum2sqr(). - M. F. Hasler, May 13 2018
(Haskell)
a000161 n =
sum $ map (a010052 . (n -)) $ takeWhile (<= n `div` 2) a000290_list
a000161_list = map a000161 [0..]
-- Reinhard Zumkeller, Aug 16 2011
(Python)
from math import prod
from sympy import factorint
def A000161(n):
f = factorint(n)
return int(not any(e&1 for e in f.values())) + (((m:=prod(1 if p==2 else (e+1 if p&3==1 else (e+1)&1) for p, e in f.items()))+((((~n & n-1).bit_length()&1)<<1)-1 if m&1 else 0))>>1) if n else 1 # Chai Wah Wu, Sep 08 2022
CROSSREFS
Equivalent sequences for other numbers of squares: A010052 (1), A000164 (3), A002635 (4), A000174 (5).
Sequence in context: A368413 A086017 A350532 * A060398 A253242 A359814
KEYWORD
nonn,core,easy,nice
STATUS
approved