(Translated by https://www.hiragana.jp/)
A006992 - OEIS
login
A006992
Bertrand primes: a(n) is largest prime < 2*a(n-1) for n > 1, with a(1) = 2.
(Formerly M0675)
32
2, 3, 5, 7, 13, 23, 43, 83, 163, 317, 631, 1259, 2503, 5003, 9973, 19937, 39869, 79699, 159389, 318751, 637499, 1274989, 2549951, 5099893, 10199767, 20399531, 40799041, 81598067, 163196129, 326392249, 652784471, 1305568919, 2611137817
OFFSET
1,1
COMMENTS
a(n) < a(n+1) by Bertrand's postulate (Chebyshev's theorem). - Jonathan Sondow, May 31 2014
Let b(n) = 2^n - a(n). Then b(n) >= 2^(n-1) - 1 and b(n) is a B_2 sequence: 0, 1, 3, 9, 19, 41, 85, 173, 349, ... - Thomas Ordowski, Sep 23 2014 See the link for B_2 sequence.
These primes can be obtained of exclusive form using a restricted variant of Rowland's prime-generating recurrence (A106108), making gcd(n, a(n-1)) = -1 when GCDs are greater than 1 and less than n (see program). These GCDs are also a divisor of each odd number from a(n) + 2 to 2*a(n-1) - 1 in reverse order, so that this subtraction with -1's invariably leads to the prime. - Manuel Valdivia, Jan 13 2015
First row of array in A229607. - Robert Israel, Mar 31 2015
Named after the French mathematician Joseph Bertrand (1822-1900). - Amiram Eldar, Jun 10 2021
REFERENCES
Martin Aigner and Günter M. Ziegler, Proofs from The Book, Springer-Verlag, Berlin, 1999; see p. 7.
Martin Griffiths, The Backbone of Pascal's Triangle, United Kingdom Mathematics Trust (2008), page 115. [From Martin Griffiths, Mar 28 2009]
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 344.
Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 189.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Robert G. Wilson v, Table of n, a(n) for n = 1..1001 (first 100 terms from T. D. Noe)
Paul Erdős, Beweis eines Satzes von Tschebyschef (in German), Acta Litt. Sci. Szeged, Vol. 5 (1932), pp. 194-198.
Paul Erdős, A theorem of Sylvester and Schur, J. London Math. Soc., Vol. 9 (1934), pp. 282-288.
Srinivasa Ramanujan, A proof of Bertrand's postulate, J. Indian Math. Soc., Vol. 11 (1919), pp. 181-182.
Vladimir Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq., Vol. 15 (2012) Article 12.5.4.
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, Vol. 116, No. 7 (2009), pp. 630-635.
Jonathan Sondow and Eric Weisstein, MathWorld: Bertrand's Postulate.
Eric Weisstein's World of Mathematics, B2 Sequence.
FORMULA
a(n+1) = A007917(2*a(n)). - Reinhard Zumkeller, Sep 17 2014
Limit_{n -> infinity} a(n)/2^n = 0.303976447924... - Thomas Ordowski, Apr 05 2015
MAPLE
A006992 := proc(n) option remember; if n=1 then 2 else prevprime(2*A006992(n-1)); fi; end;
MATHEMATICA
bertrandPrime[1] = 2; bertrandPrime[n_] := NextPrime[ 2*a[n - 1], -1]; Table[bertrandPrime[n], {n, 40}]
(* Second program: *)
NestList[NextPrime[2#, -1] &, 2, 40] (* Harvey P. Dale, May 21 2012 *)
k = 3; a[n_] := If[GCD[n, k] > 1 && GCD[n, k] < n, -1, GCD[n, k]]; Select[Differences@Table[k = a[n] + k, {n, 2611137817}], # > 1 &] (* Manuel Valdivia, Jan 13 2015 *)
PROG
(PARI) print1(t=2); for(i=2, 60, print1(", "t=precprime(2*t))) \\ Charles R Greathouse IV, Apr 01 2013
(Haskell)
a006992 n = a006992_list !! (n-1)
a006992_list = iterate (a007917 . (* 2)) 2
-- Reinhard Zumkeller, Sep 17 2014
(Python)
from sympy import prevprime
l = [2]
for i in range(1, 51):
l.append(prevprime(2 * l[i - 1]))
print(l) # Indranil Ghosh, Apr 26 2017
CROSSREFS
See A185231 for another version.
Sequence in context: A126092 A132394 A295262 * A185231 A080190 A076994
KEYWORD
nonn,nice
EXTENSIONS
Definition completed by Jonathan Sondow, May 31 2014
B_2 sequence link added by Wolfdieter Lang, Oct 09 2014
STATUS
approved