OFFSET
1,1
COMMENTS
The 4th elementary symmetric function of 2,3,..n+4 is the polynomial n*(n+1)*(n+2)*(n+3)*(15*n^4+330*n^3+2765*n^2+10482*n+15208)/5760. The denominator is (n+3)*(n+6)/2. The sequence is the rounded down ratio of both. - R. J. Mathar, Oct 01 2016
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..10000
FORMULA
a(n) = floor(1/2880 n (n+1) (n+2) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(n + 6)). - Muniru A Asiru, May 20 2018
MAPLE
SymmPolyn := proc(L::list, n::integer)
local c, a, sel;
a :=0 ;
sel := combinat[choose](nops(L), n) ;
for c in sel do
a := a+mul(L[e], e=c) ;
end do:
a;
end proc:
A024179 := proc(n)
[seq(k, k=2..n+4)] ;
2*SymmPolyn(%, 4)/(n+6)/(n+3) ;
floor(%) ;
end proc: # R. J. Mathar, Sep 23 2016
MATHEMATICA
Table[Floor[1/2880 n (n + 1) (n + 2) (15 n^4 + 330 n^3 + 2765 n^2 + 10482 n + 15208)/(n + 6)], {n, 32}] (* Ivan Neretin, May 20 2018 *)
PROG
(GAP) List([1..40], n->Int((1/2880)*n*(n+1)*(n+2)*(15*n^4+330*n^3+2765*n^2+10482*n+15208)/(n+6))); # Muniru A Asiru, May 20 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved