(Translated by https://www.hiragana.jp/)
A025324 - OEIS
login
A025324
Numbers that are the sum of 3 nonzero squares in exactly 4 ways.
19
129, 134, 146, 153, 161, 171, 189, 198, 201, 234, 243, 246, 249, 251, 254, 257, 261, 270, 278, 285, 290, 293, 294, 299, 339, 353, 362, 363, 365, 371, 378, 387, 390, 393, 395, 405, 406, 409, 411, 417, 429, 451, 454, 465, 467, 469, 473, 477, 485, 501, 502, 510, 514, 516
OFFSET
1,1
LINKS
David A. Corneth, Table of n, a(n) for n = 1..1705 (first 593 terms from Robert Price, terms <= 2*10^6)
David A. Corneth, PARI program
Eric Weisstein's World of Mathematics, Square Number.
EXAMPLE
299 is a term because 299 = 1^2 + 3^2 + 17^2 = 3^2 + 11^2 + 13^2 = 5^2 + 7^2 + 15^2 = 7^2 + 9^2 + 13^2 and there are no more such sums of four nonzero squares giving 182. - David A. Corneth, Feb 13 2019
MATHEMATICA
Select[Range@ 600, Length@ # == 4 &@ DeleteCases[PowersRepresentations[#, 3, 2], _?(AnyTrue[#, # == 0 &] &)] &] (* Michael De Vlieger, Feb 13 2019 *)
PROG
(PARI) \\ See Corneth link \\ David A. Corneth, Feb 13 2019
KEYWORD
nonn
STATUS
approved