OFFSET
1,2
COMMENTS
Multiplicative with a(2^e) = 2^e, a(p^e) = (-1)^((p^e-1)/2) otherwise. - Mitch Harris, May 17 2005
In the binary representation of n, clear everything left of the least significant 1 bit, and negate if the bit left of it was set originally. - Ralf Stephan, Aug 23 2013
This sequence is the trace of n in the minimal alternating binary representation of n (defined at A256696). - Clark Kimberling, Apr 07 2015
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
N. J. A. Sloane, Transforms
FORMULA
a(2n) = 2a(n), a(2n+1) = (-1)^n. G.f. sum(k>=0, 2^k*t/(1+t^2), t=x^2^k). a(n) = 2^A007814(n) * (-1)^((n/2^A007814(n)-1)/2). - Ralf Stephan, Oct 29 2003
a((2*n-1)*2^p) = (-1)^(n+1)*2^p, p >= 0. - Johannes W. Meijer, Jan 27 2013
EXAMPLE
Since A003188 is 0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, ...,
sequence begins 1, 2, -1, 4, 1, -2, -1, 8, 1, 2, -1, 4, ... .
MAPLE
nmax:=100: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p) := (-1)^(n+1)*2^p od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Jan 27 2013
MATHEMATICA
f[n_]:=BitXor[n, Floor[n/2]]; Differences[Array[f, 120, 0]] (* Harvey P. Dale, Jul 18 2011, applying Robert G. Wilson v's program from A003188 *)
PROG
(PARI)
a(n)=((-1)^((n/2^valuation(n, 2)-1)/2)*2^valuation(n, 2)) \\ Ralf Stephan
(Haskell)
a055975 n = a003188 n - a003188 (n-1)
a055975_list = zipWith (-) (tail a003188_list) a003188_list
-- Reinhard Zumkeller, Apr 28 2012
(Python)
def A055975(n): return (n^(n>>1))-((n-1)^(n-1>>1)) # Chai Wah Wu, Jun 29 2022
CROSSREFS
KEYWORD
easy,nice,sign,mult
AUTHOR
Alford Arnold, Jul 22 2000
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Sep 05 2000
STATUS
approved