(Translated by https://www.hiragana.jp/)
A059845 - OEIS
login
A059845
a(n) = n*(3*n + 11)/2.
19
0, 7, 17, 30, 46, 65, 87, 112, 140, 171, 205, 242, 282, 325, 371, 420, 472, 527, 585, 646, 710, 777, 847, 920, 996, 1075, 1157, 1242, 1330, 1421, 1515, 1612, 1712, 1815, 1921, 2030, 2142, 2257, 2375, 2496, 2620, 2747, 2877, 3010, 3146, 3285, 3427, 3572, 3720
OFFSET
0,2
COMMENTS
Maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian n-manifold to be realizable as a sub-manifold. - comment edited by Gene Ward Smith, Jan 15 2017
LINKS
Sela Fried, Counting r X s rectangles in nondecreasing and Smirnov words, arXiv:2406.18923 [math.CO], 2024. See p. 5.
John Nash, The Imbedding Problem For Riemannian Manifolds, Annals of Mathematics, Vol. 63, No. 1, 1956, pp. 20-63.
FORMULA
a(n) = 3*n + a(n-1) + 4 (with a(0)=0). - Vincenzo Librandi, Aug 07 2010
G.f.: x*(7 - 4*x)/(1 - x)^3. - Arkadiusz Wesolowski, Dec 24 2011
E.g.f.: (1/2)*(3*x^2 + 14*x)*exp(x). - G. C. Greubel, Jul 17 2017
MAPLE
A059845:=n->n*(3*n + 11)/2: seq(A059845(n), n=0..100); # Wesley Ivan Hurt, Jan 15 2017
MATHEMATICA
Table[n (3n+11)/2, {n, 0, 50}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 7, 17}, 50] (* Harvey P. Dale, Mar 19 2017 *)
PROG
(PARI) for (n=0, 2000, write("b059845.txt", n, " ", n*(3*n + 11)/2); ) \\ Harry J. Smith, Jun 29 2009
CROSSREFS
The generalized pentagonal numbers b*n + 3*n*(n-1)/2, for b = 1 through 12, form sequences A000326, A005449, A045943, A059845, A115067, A140090, A140091, A140672, A140673, A140674, A140675, A151542.
Sequence in context: A356293 A294133 A088566 * A006142 A228345 A196167
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Mar 10 2001
STATUS
approved