(Translated by https://www.hiragana.jp/)
A090027 - OEIS
login
A090027
Number of distinct lines through the origin in 5-dimensional cube of side length n.
12
0, 31, 211, 961, 2851, 7471, 15541, 31471, 55651, 95821, 152041, 239791, 351331, 517831, 723241, 1007041, 1352041, 1821721, 2359051, 3082921, 3904081, 4956901, 6151651, 7677901, 9334261, 11445361, 13746181, 16566691, 19644031, 23432851, 27408331, 32333581
OFFSET
0,2
COMMENTS
Equivalently, number of lattice points where the GCD of all coordinates = 1.
FORMULA
a(n) = A090030(5, n).
a(n) = (n+1)^5 - 1 - Sum_{j=2..n+1} a(floor(n/j)). - Chai Wah Wu, Mar 30 2021
EXAMPLE
a(2) = 211 because the 211 points with at least one coordinate=2 all make distinct lines and the remaining 31 points and the origin are on those lines.
MATHEMATICA
aux[n_, k_] := If[k == 0, 0, (k + 1)^n - k^n - Sum[aux[n, Divisors[k][[i]]], {i, 1, Length[Divisors[k]] - 1}]]; lines[n_, k_] := (k + 1)^n - Sum[Floor[k/i - 1]*aux[n, i], {i, 1, Floor[k/2]}] - 1; Table[lines[5, k], {k, 0, 40}]
PROG
(Python)
from functools import lru_cache
@lru_cache(maxsize=None)
def A090027(n):
if n == 0:
return 0
c, j = 1, 2
k1 = n//j
while k1 > 1:
j2 = n//k1 + 1
c += (j2-j)*A090027(k1)
j, k1 = j2, n//j2
return (n+1)**5-c+31*(j-n-1) # Chai Wah Wu, Mar 30 2021
CROSSREFS
Cf. A000225, A001047, A060867, A090020, A090021, A090022, A090023, A090024 are for n dimensions with side length 1, 2, 3, 4, 5, 6, 7, 8, respectively. A049691, A090025, A090026, A090027, A090028, A090029 are this sequence for 2, 3, 4, 5, 6, 7 dimensions. A090030 is the table for n dimensions, side length k.
Sequence in context: A022521 A152730 A361700 * A164784 A290008 A121616
KEYWORD
nonn
AUTHOR
Joshua Zucker, Nov 25 2003
STATUS
approved