OFFSET
1,2
COMMENTS
REFERENCES
Clark Kimberling, Fractal sequences and interspersions, Ars Combinatoria 45 (1997) 157-168.
LINKS
Ivan Neretin, Table of n, a(n) for n = 1..4950
Clark Kimberling, Interspersions and Dispersions.
Clark Kimberling, Interspersions and dispersions, Proceedings of the American Mathematical Society, 117 (1993) 313-321.
EXAMPLE
Northwest corner:
1 4 9 16 26 39 56 78
2 6 12 21 33 49 69 94
3 8 15 25 38 55 77 105
5 10 18 28 42 60 84 115
7 14 24 36 52 74 100 133
11 20 32 48 68 93 124 162
MATHEMATICA
(* Program computes dispersion array T of increasing sequence s[n] and the fractal sequence f of T; here, T = dispersion of the composite numbers, A114577 *)
r = 40; r1 = 10; (* r = # rows of T, r1 = # rows to show*);
c = 40; c1 = 12; (* c = # cols of T, c1 = # cols to show*);
comp = Select[Range[2, 100000], ! PrimeQ[#] &];
s[n_] := s[n] = comp[[n]]; mex[list_] := NestWhile[#1 + 1 &, 1, Union[list][[#1]] <= #1 &, 1, Length[Union[list]]]; rows = {NestList[s, 1, c]}; Do[rows = Append[rows, NestList[s, mex[Flatten[rows]], r]], {r}]; t[i_, j_] := rows[[i, j]];
TableForm[Table[t[i, j], {i, 1, r1}, {j, 1, c1}]] (* A114577 array *)
u = Flatten[Table[t[k, n - k + 1], {n, 1, c1}, {k, 1, n}]] (* A114577 sequence *)
row[i_] := row[i] = Table[t[i, j], {j, 1, c}];
f[n_] := Select[Range[r], MemberQ[row[#], n] &]
v = Flatten[Table[f[n], {n, 1, 100}]] (* A022446, fractal sequence *)
(* - Clark Kimberling, Oct 09 2014 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Clark Kimberling, Dec 09 2005
STATUS
approved