(Translated by https://www.hiragana.jp/)
A122749 - OEIS
login
A122749
Number of arrangements of n non-attacking bishops on an n X n board such that every square of the board is controlled by at least one bishop.
7
4, 2, 16, 44, 256, 768, 5184, 25344, 186624, 996480, 8294400, 57888000, 530841600, 4006195200, 40642560000, 367408742400, 4064256000000, 39358255104000, 474054819840000, 5254107586560000, 68263894056960000, 804207665479680000, 11242684107325440000
OFFSET
2,1
LINKS
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [E_n, n >= 2.]
FORMULA
From Andy Huchala, Mar 22 2024 (based on Mathematica code): (Start)
a(4*n) = (n+1)^2*((2*n)!)^2.
a(4*n+1) = (1/3)*(n+2)*(1+4*n+6*n^2)*((2*n)!)^2.
a(4*n+2) = 4*(n+1)^4*((2*n)!)^2.
a(4*n+3) = (1/3)*(3+17*n+22*n^2+6*n^3)*(2*n)!*(2*n+2)!. (End)
MAPLE
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end;
MATHEMATICA
Table[If[n==1, 1, 1/768*(2*(3*n^3+23*n^2+17*n+21)*(((n-1)/2)!)^2*(1-(-1)^n+2*Sin[(Pi*n)/2])-2*(3*n^3+17*n^2-47*n+3)*((n-3)/2)!*((n+1)/2)!*((-1)^n+2*Sin[(Pi*n)/2]-1)+3*(n+2)^4*((n/2-1)!)^2*((-1)^n-2*Cos[(Pi*n)/2]+1)+12*(n+4)^2*((n/2)!)^2*((-1)^n+2*Cos[(Pi*n)/2]+1))], {n, 2, 25}] (* Vaclav Kotesovec, Apr 26 2012 *)
a[n_] := Module[{k}, If[Mod[n, 2]==0, k = n/2; If[Mod[k, 2]==0, (k!*(k+2) /2)^2, ((k-1)!*(k+1)^2/2)^2], k = (n-1)/2; If[Mod[k, 2]==0, ((k!)^2/12)* (3*k^3+16*k^2+18*k+8), ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3)]]];
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Jul 23 2022, after Maple code *)
CROSSREFS
Sequence in context: A182872 A137393 A356569 * A189741 A303142 A328695
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Sep 25 2006
EXTENSIONS
New name from Vaclav Kotesovec, Apr 26 2012
STATUS
approved