OFFSET
0,5
COMMENTS
From Vaclav Kotesovec, Apr 26 2012: (Start)
This sequence gives (according to the article by Robinson) the number of inequivalent solutions.
For the total number of all arrangements of n non-attacking bishops such that every square of the board is controlled by at least one bishop, see A122749.
For the total number of all arrangements of n bishops (in any position) such that every square of the board is controlled by at least one bishop, see A182333.
(End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 0..250
Jean-François Alcover, Mathematica program.
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
MAPLE
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end; # Gives A122749
unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
C:=proc(n) local k; if n mod 2 = 0 then RETURN(0); fi; k:=(n-1)/2; if k mod 2 = 0 then RETURN( k*2^(k-1)*((k/2)!)^2 ); else RETURN( 2^k*(((k+1)/2)!)^2 ); fi; end; # Gives A122693
Q:=proc(n) local m; if n mod 8 <> 1 then RETURN(0); fi; m:=(n-1)/8; ((2*m)!)^2/(m!)^2; end; # Gives A122747
M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end; # Gives A122748
a:=n-> if n <= 1 then RETURN(1) else E(n)/8 + C(n)/8 + Q(n)/4 + M(n)/4; fi; # Gives A005635
# The following additional Maple programs produce A123071, A005631, A123072, A005633, A005632, A005634
S:=proc(n) local k; if n mod 2 = 0 then RETURN(0) else k:=(n-1)/2; RETURN(B(k)*B(k+1)); fi; end; # Gives A123071
psi:=n->S(n)/2; # Gives A005631
zeta:=n->Q(n)/2; # Gives A123072
mu:=n->(M(n)-S(n))/2; # Gives A005633
chi:=n->(C(n)-S(n)-Q(n))/4; # Gives A005632
eps:=n->E(n)/8-C(n)/8+S(n)/4-M(n)/4; # Gives A005634
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Sep 25 2006
STATUS
approved