OFFSET
1,2
COMMENTS
Conjecture: After omitting multiple occurrences we get A036912. - Vladeta Jovovic, Oct 31 2007. This conjecture has been established by Max Alekseyev - see link below.
LINKS
M. F. Hasler, Table of n, a(n) for n = 1..1000
Max Alekseyev, Proof of Jovovic's conjecture
EXAMPLE
For n = 6 we have phi(7)=6, phi(8)=4, phi(9)=6, phi(10)=4, phi(11)=10, phi(12)=4. The least of these values is 4. So a(6) = 4.
MAPLE
A131883 := proc(n) min(seq(numtheory[phi](i), i=n+1..2*n)) ; end: seq(A131883(n), n=1..500) ; # R. J. Mathar, Nov 09 2007
MATHEMATICA
Table[Min[Table[EulerPhi[i], {i, n + 1, 2*n}]], {n, 1, 80}] (* Stefan Steinerberger, Oct 30 2007 *)
PROG
(PARI) A131883(n)=vecsort(vector(n, i, eulerphi(n+i)))[1]
vector(300, i, A131883(i)) \\ M. F. Hasler, Nov 04 2007
CROSSREFS
KEYWORD
nonn
AUTHOR
Leroy Quet, Oct 24 2007
EXTENSIONS
More terms from Stefan Steinerberger and R. J. Mathar, Oct 30 2007
STATUS
approved