(Translated by https://www.hiragana.jp/)
A135141 - OEIS
login
A135141
a(1)=1, a(p_n)=2*a(n), a(c_n)=2*a(n)+1, where p_n = n-th prime, c_n = n-th composite number.
44
1, 2, 4, 3, 8, 5, 6, 9, 7, 17, 16, 11, 10, 13, 19, 15, 12, 35, 18, 33, 23, 21, 14, 27, 39, 31, 25, 71, 34, 37, 32, 67, 47, 43, 29, 55, 22, 79, 63, 51, 20, 143, 26, 69, 75, 65, 38, 135, 95, 87, 59, 111, 30, 45, 159, 127, 103, 41, 24, 287, 70, 53, 139, 151, 131, 77, 36, 271, 191
OFFSET
1,2
COMMENTS
A permutation of the positive integers, related to A078442.
a(p) is even when p is prime and is divisible by 2^(prime order of p).
What is the length of the cycle containing 10? Is it infinite? The cycle begins 10, 17, 12, 11, 16, 15, 19, 18, 35, 29, 34, 43, 26, 31, 32, 67, 36, 55, 159, 1055, 441, 563, 100, 447, 7935, 274726911, 1013992070762272391167, ... Implementation in Mmca: NestList[a(AT)# &, 10, 26] Furthermore, it appears that any non-single-digit number has an infinite cycle. (* Robert G. Wilson v, Feb 16 2008 *)
Records: 1, 2, 4, 8, 9, 17, 19, 35, 39, 71, 79, 143, 159, 287, 319, 575, 639, 1151, 1279, 2303, 2559, 4607, 5119, 9215, 10239, 18431, 20479, 36863, 40959, 73727, 81919, 147455, 163839, 294911, 327679, 589823, 655359, ..., . (* Robert G. Wilson v, Feb 16 2008 *)
FORMULA
a(n) = 2*A135141((A049084(n))*chip + A066246(n)*(1-chip)) + 1 - chip, where chip = A010051(n). - Reinhard Zumkeller, Jan 29 2014
From Antti Karttunen, Dec 09 2019: (Start)
A007814(a(n)) = A078442(n).
A070939(a(n)) = A246348(n).
A080791(a(n)) = A246370(n).
A054429(a(n)) = A246377(n).
A245702(a(n)) = A245703(n).
a(A245704(n)) = A245701(n).
(End)
EXAMPLE
a(20) = 33 = 2*16 + 1 because 20 is 11th composite and a(11)=16. Or, a(20)=33=100001(bin). In other words it is a composite number, its index is a prime number, whose index is a prime....
MATHEMATICA
a[1] = 1; a[n_] := If[PrimeQ@n, 2*a[PrimePi[n]], 2*a[n - 1 - PrimePi@n] + 1]; Array[a, 69] (* Robert G. Wilson v, Feb 16 2008 *)
PROG
(Maxima) Let pc = prime count (which prime it is), cc = composite count:
pc[1]:0;
cc[1]:0;
pc[2]:1;
cc[4]:1;
pc[n]:=if primep(n) then 1+pc[prev_prime(n)] else 0;
cc[n]:=if primep(n) then 0 else if primep(n-1) then 1+cc[n-2] else 1+cc[n-1];
a[1]:1;
a[n]:=if primep(n) then 2*a[pc[n]] else 1+2*a[cc[n]];
(Haskell)
import Data.List (genericIndex)
a135141 n = genericIndex a135141_list (n-1)
a135141_list = 1 : map f [2..] where
f x | iprime == 0 = 2 * (a135141 $ a066246 x) + 1
| otherwise = 2 * (a135141 iprime)
where iprime = a049084 x
-- Reinhard Zumkeller, Jan 29 2014
(Python)
from sympy import isprime, primepi
def a(n): return 1 if n==1 else 2*a(primepi(n)) if isprime(n) else 2*a(n - 1 - primepi(n)) + 1 # Indranil Ghosh, Jun 11 2017, after Mathematica code
(PARI) A135141(n) = if(1==n, 1, if(isprime(n), 2*A135141(primepi(n)), 1+(2*A135141(n-primepi(n)-1)))); \\ Antti Karttunen, Dec 09 2019
CROSSREFS
Cf. A246346, A246347 (record positions and values).
Cf. A227413 (inverse).
Cf. A071574, A245701, A245702, A245703, A245704, A246377, A236854, A237427 for related and similar permutations.
Sequence in context: A207790 A305427 A269375 * A098709 A054238 A225589
KEYWORD
nonn,look
AUTHOR
Katarzyna Matylla, Feb 13 2008
STATUS
approved