(Translated by https://www.hiragana.jp/)
A190581 - OEIS
login
A190581
Value of z in the Diophantine equation x^3 + y^3 = n*z^3 (with x>0 and minimal and x >= y and y != 0)
3
1, 21, 1, 1, 39, 3, 294, 7, 1, 7, 9954, 1, 1, 57, 42, 582, 182, 1, 1, 129, 2, 3, 6111, 197028, 217, 7083, 1, 3, 1, 1, 1323, 620505, 3318, 13, 43, 3606, 1302, 3, 111, 330498, 3, 216266610, 13, 273, 1, 5733, 590736058375050, 3, 1, 117, 1014, 25767, 19, 37, 1878, 1029364, 1, 37045412880, 1, 1, 1, 11285694
OFFSET
1,2
COMMENTS
A190356(n)^3 + y^3 = A020898(n)*a(n)^3. Unknown y corresponds to sequence A190580.
The 4 sequences A020898 [i.e. n], A190356 [i.e. x], A190580 [i.e. y] and A190581 [i.e. z] satisfy the equation A190356(n)^3 + A190580(n)^3 = A020898(n) * A190581(n)^3
LINKS
EXAMPLE
a(18) = 1 because A020898(18) = 35 and 3^3 + 2^3 = 35*1^3.
MATHEMATICA
a[n_] := z /. ToRules[ Reduce[ z > 0 && A190356[[n]]^3 + A190580[[n]]^3 == A020898[[n]]*z^3, z, Integers]]; Table[a[n] , {n, 1, 62}]
CROSSREFS
Sequence in context: A040443 A040442 A040441 * A350999 A291073 A172301
KEYWORD
nonn
AUTHOR
STATUS
approved