(Translated by https://www.hiragana.jp/)
A198113 - OEIS
login
A198113
Decimal expansion of greatest x having 2*x^2+x=cos(x).
3
4, 6, 3, 9, 0, 2, 3, 8, 2, 5, 9, 7, 4, 1, 1, 9, 0, 9, 7, 5, 6, 7, 0, 3, 1, 6, 9, 5, 3, 5, 3, 5, 0, 5, 8, 9, 7, 2, 0, 7, 5, 7, 5, 8, 2, 7, 1, 2, 0, 1, 4, 2, 0, 1, 5, 3, 6, 2, 2, 5, 6, 8, 9, 2, 6, 5, 2, 5, 9, 5, 3, 1, 9, 5, 9, 9, 6, 0, 9, 6, 9, 0, 7, 4, 0, 1, 1, 9, 4, 4, 2, 7, 3, 8, 0, 3, 6, 9, 7
OFFSET
0,1
COMMENTS
See A197737 for a guide to related sequences. The Mathematica program includes a graph.
EXAMPLE
least x: -0.870316341177487538672405292348150615...
greatest x: 0.463902382597411909756703169535350589...
MATHEMATICA
a = 2; b = 1; c = 1;
f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
Plot[{f[x], g[x]}, {x, -1, 1}]
r1 = x /. FindRoot[f[x] == g[x], {x, -0.88, -0.87}, WorkingPrecision -> 110]
RealDigits[r1](* A198112 *)
r2 = x /.FindRoot[f[x] == g[x], {x, 4.6, 4.7}, WorkingPrecision -> 110]
RealDigits[r2](* A198113 *)
CROSSREFS
Cf. A197737.
Sequence in context: A276761 A073000 A377277 * A264962 A082193 A255767
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 21 2011
STATUS
approved