(Translated by https://www.hiragana.jp/)
A206829 - OEIS
login
A206829
Number of distinct irreducible factors of the polynomial y(n,x) defined at A206821.
2
0, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 2, 2, 1, 3, 3, 1, 3, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 3, 1, 2, 2, 2, 1, 2, 1, 2, 2, 2, 1, 3, 1, 1, 2, 4, 1, 3, 1, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1, 2, 2, 2, 1, 2, 1, 3, 1, 2, 1, 3, 1, 2, 1, 2, 1, 2, 2, 2, 3, 1, 2, 2, 2, 1, 3, 1
OFFSET
1,5
COMMENTS
The first 6 polynomials: 1, x, 1+x, x^2, x^2-1, x^2-x, representing an ordering of the monic polynomials having coefficients in {-1,0,1}; see A206821.
EXAMPLE
y(5,x) = (x-1)(x+1), so a(5)=2.
MATHEMATICA
t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
b[n_] := Reverse[Table[x^k, {k, 0, n}]]
p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
q2[n_] := p[n - f[k] + 2]
y1 = Table[p[n], {n, 1, 4}];
Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}],
Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 8}]
y = Flatten[y1]; (* polynomials over {-1, 0, 1} *)
TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]]
Table[-1 + Length[FactorList[y[[n]]]],
{n, 1, 120}] (* A206829 *)
CROSSREFS
Cf. A206821.
Sequence in context: A336123 A353849 A075661 * A319694 A335641 A163495
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 12 2012
STATUS
approved