(Translated by https://www.hiragana.jp/)
A244880 - OEIS
login
A244880
Number of magic labelings of the cycle-of-loops graph LOOP X C_8 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph.
11
1, 47, 650, 4726, 23219, 87677, 274132, 743724, 1806597, 4016683, 8306078, 16168802, 29904823, 52936313, 90209192, 148694104, 238002057, 371131047, 565361074, 843316046, 1234212155, 1775313397, 2513615996, 3507784580, 4830364045, 6570292131, 8835738822, 11757299770, 15491572031
OFFSET
0,2
LINKS
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: (1+38*(x+x^5)+263*(x^2+x^4)+484*x^3+x^6) / (1-x)^9.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
MAPLE
A244880:=n->(630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630: seq(A244880(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
MATHEMATICA
CoefficientList[Series[(1 + 38 (x + x^5) + 263 (x^2 + x^4) + 484 x^3 + x^6)/(1 - x)^9, {x, 0, 28}], x] (* Michael De Vlieger, Sep 15 2017 *)
PROG
(PARI) Vec((1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Jan 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 08 2014
EXTENSIONS
Name corrected by David J. Seal, Sep 13 2017
STATUS
approved