OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
R. P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission]
Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1).
FORMULA
G.f.: (1+38*(x+x^5)+263*(x^2+x^4)+484*x^3+x^6) / (1-x)^9.
From Colin Barker, Jan 12 2017: (Start)
a(n) = (630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630.
a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9) for n>8.
(End)
MAPLE
A244880:=n->(630 + 3051*n + 6570*n^2 + 8211*n^3 + 6503*n^4 + 3339*n^5 + 1085*n^6 + 204*n^7 + 17*n^8) / 630: seq(A244880(n), n=0..50); # Wesley Ivan Hurt, Sep 16 2017
MATHEMATICA
CoefficientList[Series[(1 + 38 (x + x^5) + 263 (x^2 + x^4) + 484 x^3 + x^6)/(1 - x)^9, {x, 0, 28}], x] (* Michael De Vlieger, Sep 15 2017 *)
PROG
(PARI) Vec((1 + 6*x + x^2)*(1 + 32*x + 70*x^2 + 32*x^3 + x^4) / (1 - x)^9 + O(x^30)) \\ Colin Barker, Jan 12 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 08 2014
EXTENSIONS
Name corrected by David J. Seal, Sep 13 2017
STATUS
approved