(Translated by https://www.hiragana.jp/)
A245531 - OEIS
login
a(n) = Round((gamma^2 + 1)/gamma^(n-2)).
1

%I #11 Sep 08 2022 08:46:08

%S 0,1,1,2,4,7,12,21,36,62,108,187,325,563,975,1688,2925,5068,8780,

%T 15210,26351,45652,79091,137021,237383,411255,712481,1234342,2138441,

%U 3704752,6418316,11119441,19263928,33373883,57818741,100168351,173537132,300645222

%N a(n) = Round((gamma^2 + 1)/gamma^(n-2)).

%C a(n)/a(n+1) converges to Euler's constant.

%H G. C. Greubel, <a href="/A245531/b245531.txt">Table of n, a(n) for n = 0..1000</a>

%e a(6) = 12 because (gamma^2 + 1)/gamma^4 = 12.0097973251....

%p A245531:=n->round((gamma^2+1)/gamma^(n-2)): seq(A245531(n), n=0..50); # _Wesley Ivan Hurt_, Jul 27 2014

%t Table[Round[(EulerGamma^2 +1)/EulerGamma^(n-2)], {n,0,50}] (* _G. C. Greubel_, Sep 04 2018 *)

%o (PARI) for(n=0, 37, print1(round((Euler^2+1)/Euler^(n-2)), ", "));

%o (Magma) R:= RealField(50); [Round((EulerGamma(R)^2 +1 )/EulerGamma(R)^(n-2)): n in [0..50]]; // _G. C. Greubel_, Sep 04 2018

%Y Cf. A001620.

%K nonn

%O 0,4

%A _Arkadiusz Wesolowski_, Jul 25 2014