(Translated by https://www.hiragana.jp/)
A245531 - OEIS
login
A245531
a(n) = Round((gamma^2 + 1)/gamma^(n-2)).
1
0, 1, 1, 2, 4, 7, 12, 21, 36, 62, 108, 187, 325, 563, 975, 1688, 2925, 5068, 8780, 15210, 26351, 45652, 79091, 137021, 237383, 411255, 712481, 1234342, 2138441, 3704752, 6418316, 11119441, 19263928, 33373883, 57818741, 100168351, 173537132, 300645222
OFFSET
0,4
COMMENTS
a(n)/a(n+1) converges to Euler's constant.
LINKS
EXAMPLE
a(6) = 12 because (gamma^2 + 1)/gamma^4 = 12.0097973251....
MAPLE
A245531:=n->round((gamma^2+1)/gamma^(n-2)): seq(A245531(n), n=0..50); # Wesley Ivan Hurt, Jul 27 2014
MATHEMATICA
Table[Round[(EulerGamma^2 +1)/EulerGamma^(n-2)], {n, 0, 50}] (* G. C. Greubel, Sep 04 2018 *)
PROG
(PARI) for(n=0, 37, print1(round((Euler^2+1)/Euler^(n-2)), ", "));
(Magma) R:= RealField(50); [Round((EulerGamma(R)^2 +1 )/EulerGamma(R)^(n-2)): n in [0..50]]; // G. C. Greubel, Sep 04 2018
CROSSREFS
Cf. A001620.
Sequence in context: A306306 A357947 A227376 * A189593 A100671 A189600
KEYWORD
nonn
AUTHOR
STATUS
approved