OFFSET
0,4
COMMENTS
a(n)/a(n+1) converges to Euler's constant.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
EXAMPLE
a(6) = 12 because (gamma^2 + 1)/gamma^4 = 12.0097973251....
MAPLE
A245531:=n->round((gamma^2+1)/gamma^(n-2)): seq(A245531(n), n=0..50); # Wesley Ivan Hurt, Jul 27 2014
MATHEMATICA
Table[Round[(EulerGamma^2 +1)/EulerGamma^(n-2)], {n, 0, 50}] (* G. C. Greubel, Sep 04 2018 *)
PROG
(PARI) for(n=0, 37, print1(round((Euler^2+1)/Euler^(n-2)), ", "));
(Magma) R:= RealField(50); [Round((EulerGamma(R)^2 +1 )/EulerGamma(R)^(n-2)): n in [0..50]]; // G. C. Greubel, Sep 04 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Arkadiusz Wesolowski, Jul 25 2014
STATUS
approved