(Translated by https://www.hiragana.jp/)
A256786 - OEIS
login
A256786
Numbers which are divisible by prime(d) for all digits d in their decimal representation.
16
12, 14, 42, 55, 154, 222, 228, 714, 1122, 1196, 1212, 1414, 2112, 2142, 2262, 3355, 4144, 4242, 5335, 5544, 5555, 6162, 9499, 11112, 11144, 11214, 11424, 11466, 11622, 11818, 11914, 12222, 12882, 14112, 15554, 16666, 21216, 21222, 21252, 21888, 22122, 22212
OFFSET
1,1
COMMENTS
All terms are zerofree, cf. A052382;
there is no term containing digits 1 and 3 simultaneously;
a(n) contains at least one digit 1 iff a(n) is even, cf. A011531, A005843;
a(n) contains at least one digit 2 iff a(n) mod 3 = 0, cf. A011532, A008585;
a(n) contains at least one digit 3 iff a(n) mod 10 = 5, cf. A011533, A017329;
A020639(a(n)) <= 23.
The equivalent in base 2 is the empty sequence, in base 3 it is A191681\{0}; see A256874-A256879 for the base 4 - base 9 variant, and A256870 for a variant where digits 0 are allowed but divisibility by prime(d+1) is required instead. - M. F. Hasler, Apr 11 2015
LINKS
Lars Blomberg and Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Éric Angelini, Divisibility by primes, SeqFan list, Apr 10 2015.
EXAMPLE
Smallest terms containing the nonzero decimal digits:
. d | prime(d) | n | a(n)
. ---+----------+--------------------------
. 1 | 2 | 1 | 12 = 2^2 * 3
. 2 | 3 | 1 | 12 = 2^2 * 3
. 3 | 5 | 16 | 3355 = 5 * 11 * 61
. 4 | 7 | 2 | 14 = 2 * 7
. 5 | 11 | 4 | 55 = 5 * 11
. 6 | 13 | 10 | 1196 = 2^2 * 13 * 23
. 7 | 17 | 8 | 714 = 2 * 3 * 7 * 17
. 8 | 19 | 7 | 228 = 2^2 * 3 * 19
. 9 | 23 | 10 | 1196 = 2^2 * 13 * 23 .
MATHEMATICA
Select[Range@22222, FreeQ[IntegerDigits[#], 0]&&Total[Mod[#, Prime[IntegerDigits[#]]]]==0&] (* Ivan N. Ianakiev, Apr 11 2015 *)
PROG
(Haskell)
a256786 n = a256786_list !! (n-1)
a256786_list = filter f a052382_list where
f x = g x where
g z = z == 0 || x `mod` a000040 d == 0 && g z'
where (z', d) = divMod z 10
(PARI) is_A256786(n)=!for(i=1, #d=Set(digits(n)), (!d[i]||n%prime(d[i]))&&return) \\ M. F. Hasler, Apr 11 2015
(Python)
primes = [1, 2, 3, 5, 7, 11, 13, 17, 19, 23]
def ok(n):
s = str(n)
return "0" not in s and all(n%primes[int(d)] == 0 for d in s)
print([k for k in range(22213) if ok(k)]) # Michael S. Branicky, Dec 14 2021
KEYWORD
nonn,base
AUTHOR
STATUS
approved