(Translated by https://www.hiragana.jp/)
A264388 - OEIS
login
A264388
Numerators of binomial(n-1, 2)/(6*n), for n >= 1. Numerators of Dedekind sum s(1, n).
6
0, 0, 1, 1, 1, 5, 5, 7, 14, 3, 15, 55, 11, 13, 91, 35, 20, 34, 51, 57, 95, 35, 77, 253, 46, 25, 325, 117, 63, 203, 145, 155, 248, 44, 187, 595, 105, 111, 703, 247, 130, 205, 287, 301, 473, 165, 345, 1081, 188, 98, 1225, 425, 221, 689, 477, 495, 770, 133, 551
OFFSET
1,6
COMMENTS
For the denominators see A264389.
This gives the numerators of the rational numbers r(n) = s(1,n), where s(h,k) = Sum_{r=1..(k-1)} (r/k)*(h*r/k - floor(h*r/k)- 1/2), k >=1, are the Dedekind sums. See the Apostol reference, pp. 52, 61-69, 72-73, and the Weisstein link, where GCD(h,k) = 1 is assumed.
s(h,k) = Sum_{r = 1..k} ((r/k))*((h*r/k)) with ((x)) = x - floor(x) - 1/2 if x is not an integer, else 0.
s(h,k) = (Sum_{r=1..(k-1)} cot(Pi*h*r/k)*cot(Pi*r/k))/(4*k), k >= 1, r and h integers. Exercise 11, p. 72 of the Apostol reference.
6*n*s(1,n) = binomial(n-1, 2) = A161680(n-1), n >= 1.
REFERENCES
Apostol, Tom, M., Modular Functions and Dirichlet Series in Number Theory, Second edition, Springer, 1990.
LINKS
Eric Weisstein's World of Mathematics, Dedekind Sum.
FORMULA
a(n) = numerator(binomial(n-1, 2)/(6*n)) (in lowest terms), n >= 1.
a(n) = numerator(r(n)), with r(n) = s(1,n) = Sum_{r=1..(n-1)} (r/n)*(r/n - floor(r/n)- 1/2), n >= 1. For other forms see the above comments.
PROG
(Julia)
using Nemo
A264388(n) = numerator(dedekind_sum(1, n))
[A264388(n) for n in 1:70] |> println # Peter Luschny, Mar 13 2018
CROSSREFS
Sequence in context: A252006 A158299 A093307 * A141392 A088047 A109257
KEYWORD
nonn,easy,frac
AUTHOR
Wolfdieter Lang, Jan 11 2016
STATUS
approved