OFFSET
0
COMMENTS
A word that is morphic and recurrent, but neither pure morphic, uniform morphic, primitive morphic, nor uniformly recurrent.
LINKS
Jack W Grahl, Table of n, a(n) for n = 0..999
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
EXAMPLE
S[4] = 0,1,1,1,1,1,1,1,1,1.
MATHEMATICA
S[k_] := Join[{0}, Table[1, {(IntegerExponent[k, 2] + 1)^2}]];
Array[S, 20] // Flatten (* Jean-François Alcover, Nov 02 2018 *)
PROG
(Haskell)
a316343_count :: Integer -> Int
a316343_count n = fromIntegral ((v + 1) ^ 2) where
v
| n `mod` 2 == 1 = 0
| otherwise = 1 + (n `div` 2)
a316343_S :: Integer -> [Integer]
a316343_S n = 0 : (replicate (a316343_count n) 1)
a316343 :: [Integer]
a316343 = concatMap a316343_S [1..]
-- Jack W Grahl, Jul 23 2018
CROSSREFS
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jul 14 2018
EXTENSIONS
More terms from Jack W Grahl, Jul 23 2018
STATUS
approved