(Translated by https://www.hiragana.jp/)
A340079 - OEIS
login
A340079
a(n) = n / gcd(n, 1+A018804(n)), where A018804(n) = Sum_{k=1..n} gcd(k, n).
3
1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 12, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 4, 1, 15, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 3, 1, 44, 9, 23, 1, 48, 49, 25, 51, 52, 1, 27, 11, 56, 19, 29, 1, 60, 1, 31, 63, 64, 65, 33, 1, 68, 69, 35, 1, 72, 1, 37, 75, 76, 77, 39, 1, 80, 81, 41, 1, 84, 85, 43, 87, 88
OFFSET
1,4
COMMENTS
It is conjectured that this is 1 iff n is 1 or a prime. See Thomas Ordowski's Oct 22 2014 comment in A018804.
FORMULA
a(n) = n / A340078(n) = n / gcd(n, 1+A018804(n)).
PROG
(PARI)
A018804(n) = sumdiv(n, d, n*eulerphi(d)/d); \\ From A018804
A340079(n) = (n/gcd(n, 1+A018804(n)));
CROSSREFS
Cf. also A055032, A323072 (similar but different sequences).
Sequence in context: A263022 A326690 A353275 * A323072 A055032 A039930
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 30 2020
STATUS
approved