(Translated by https://www.hiragana.jp/)
A364821 - OEIS
login
A364821
Decimal expansion of the unique value of x such that Gamma(x + i*sqrt(1-x^2)) is an imaginary number and -1 < x < 1.
4
1, 4, 9, 9, 6, 5, 9, 7, 4, 6, 0, 6, 4, 9, 1, 0, 8, 9, 8, 5, 3, 0, 9, 7, 0, 5, 3, 6, 6, 4, 1, 4, 5, 7, 3, 6, 6, 8, 7, 4, 1, 8, 4, 1, 0, 2, 3, 9, 9, 6, 9, 7, 4, 2, 9, 1, 1, 7, 8, 3, 1, 4, 7, 5, 5, 9, 8, 7, 2, 4, 7, 9, 7, 8, 9, 3, 9, 0, 2, 7, 0, 7, 3, 4, 1, 4, 6, 4, 6, 4, 2, 5, 3, 6, 5, 3, 0, 0, 8, 1, 0, 3, 6, 5, 8, 3
OFFSET
0,2
COMMENTS
Gamma(A364821 + i*sqrt(1-A364821^2)) = -i*0.5377003887835295919... see A366345.
Also decimal expansion of the unique value of x in the range -1 < x < 1 for which the function Im(Gamma(x + i*sqrt(1-x^2)))/abs(Gamma(x + i*sqrt(1-x^2))) is minimized.
EXAMPLE
0.149965974606491...
MATHEMATICA
RealDigits[
x /. FindRoot[Re[Gamma[x + I Sqrt[1 - x^2]]], {x, 0.15},
WorkingPrecision -> 106]][[1]]
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Oct 07 2023
STATUS
approved