(Translated by https://www.hiragana.jp/)
The On-Line Encyclopedia of Integer Sequences (OEIS)
login

Revision History for A020899

(Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Numbers k with an odd number of terms in their Zeckendorf representation (write k as a sum of non-consecutive distinct Fibonacci numbers).
(history; published version)
#20 by Michael De Vlieger at Sun Feb 05 09:24:37 EST 2023
STATUS

reviewed

approved

#19 by Joerg Arndt at Sun Feb 05 02:01:31 EST 2023
STATUS

proposed

reviewed

#18 by Amiram Eldar at Sun Feb 05 01:32:31 EST 2023
STATUS

editing

proposed

#17 by Amiram Eldar at Sun Feb 05 01:27:46 EST 2023
REFERENCES

C. G. Lekkerkerker, "Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci," Simon Stevin 29 (1952) , 190-195.

Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, (1972), 179-182, 1972.

#16 by Amiram Eldar at Sun Feb 05 01:10:22 EST 2023
LINKS

D. E. Daykin, <a href="https://doi.org/10.1112/jlms/s1-35.2.143">Representation of natural numbers as sums of generalized Fibonacci numbers</a>, J. London Math. Soc. 35 (1960) , 143-160.

#15 by Amiram Eldar at Sun Feb 05 01:09:33 EST 2023
REFERENCES

D. E. Daykin, "Representation of natural numbers as sums of generalized Fibonacci numbers," J. London Math. Soc. 35 (1960) 143-160.

LINKS

D. E. Daykin, <a href="https://doi.org/10.1112/jlms/s1-35.2.143">Representation of natural numbers as sums of generalized Fibonacci numbers</a>, J. London Math. Soc. 35 (1960) 143-160.

#14 by Amiram Eldar at Sun Feb 05 01:08:56 EST 2023
COMMENTS

A007895(a(n)) mod 2 = 1. - Reinhard Zumkeller, Mar 10 2013

Numbers k such that A095076(k) = 1. - Amiram Eldar, Feb 05 2023

REFERENCES

Edouard Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.

FORMULA

A007895(a(n)) mod 2 = 1. - Reinhard Zumkeller, Mar 10 2013

CROSSREFS
#13 by Amiram Eldar at Sun Feb 05 01:07:22 EST 2023
NAME

Odd Numbers k with an odd number of terms in their Zeckendorf representation of n (write n k as a sum of non-consecutive distinct Fibonacci numbers).

DATA

1, 2, 3, 5, 8, 12, 13, 17, 19, 20, 21, 25, 27, 28, 30, 31, 32, 34, 38, 40, 41, 43, 44, 45, 48, 49, 50, 52, 55, 59, 61, 62, 64, 65, 66, 69, 70, 71, 73, 77, 78, 79, 81, 84, 88, 89, 93, 95, 96, 98, 99, 100, 103, 104, 105, 107, 111, 112, 113, 115, 118, 122, 124, 125

MATHEMATICA

Flatten @ Position[Mod[DigitCount[Select[Range[0, 1000], BitAnd[#, 2 #] == 0 &], 2, 1], 2], 1] - 1 (* Amiram Eldar, Feb 05 2023 *)

STATUS

approved

editing

#12 by Susanna Cuyler at Sat Sep 29 18:43:04 EDT 2018
STATUS

proposed

approved

#11 by Jon E. Schoenfield at Sat Sep 29 17:32:13 EDT 2018
STATUS

editing

proposed