reviewed
approved
reviewed
approved
proposed
reviewed
editing
proposed
C. G. Lekkerkerker, "Voorstelling van natuurlijke getallen door een som van getallen van Fibonacci," Simon Stevin 29 (1952) , 190-195.
Edouard Zeckendorf, Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, (1972), 179-182, 1972.
D. E. Daykin, <a href="https://doi.org/10.1112/jlms/s1-35.2.143">Representation of natural numbers as sums of generalized Fibonacci numbers</a>, J. London Math. Soc. 35 (1960) , 143-160.
D. E. Daykin, "Representation of natural numbers as sums of generalized Fibonacci numbers," J. London Math. Soc. 35 (1960) 143-160.
D. E. Daykin, <a href="https://doi.org/10.1112/jlms/s1-35.2.143">Representation of natural numbers as sums of generalized Fibonacci numbers</a>, J. London Math. Soc. 35 (1960) 143-160.
A007895(a(n)) mod 2 = 1. - Reinhard Zumkeller, Mar 10 2013
Numbers k such that A095076(k) = 1. - Amiram Eldar, Feb 05 2023
Edouard Zeckendorf, E., Représentation des nombres naturels par une somme des nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Roy. Sci. Liège 41, 179-182, 1972.
A007895(a(n)) mod 2 = 1. - Reinhard Zumkeller, Mar 10 2013
Odd Numbers k with an odd number of terms in their Zeckendorf representation of n (write n k as a sum of non-consecutive distinct Fibonacci numbers).
1, 2, 3, 5, 8, 12, 13, 17, 19, 20, 21, 25, 27, 28, 30, 31, 32, 34, 38, 40, 41, 43, 44, 45, 48, 49, 50, 52, 55, 59, 61, 62, 64, 65, 66, 69, 70, 71, 73, 77, 78, 79, 81, 84, 88, 89, 93, 95, 96, 98, 99, 100, 103, 104, 105, 107, 111, 112, 113, 115, 118, 122, 124, 125
Flatten @ Position[Mod[DigitCount[Select[Range[0, 1000], BitAnd[#, 2 #] == 0 &], 2, 1], 2], 1] - 1 (* Amiram Eldar, Feb 05 2023 *)
approved
editing
proposed
approved
editing
proposed