editing
approved
editing
approved
a(A119598(n)) > 3; a(A053696(n)) > 2; a(A085104(n)) > 2. - Reinhard Zumkeller, Jan 22 2014
A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014
a(31)=3: 31 = 2^4+2^3+2^2+2^1+2^0 = 35^32+35^1+35^0 = 30^1+30^0.
a085104 a088323 n = a085104_list !! sum $ map (f n) [2 .. n-1)] where
a085104_list = filter ((> 1) . a088323) a000040_list
f x b = if x == 0 then 1 else if d /= 1 then 0 else f x' b
where (x', d) = divMod x b
Example corrected by Reinhard Zumkeller, Jan 22 2014
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>
A010051(a(n)) * A088323(a(n)) > 1. - Reinhard Zumkeller, Jan 22 2014
(Haskell)
a085104 n = a085104_list !! (n-1)
a085104_list = filter ((> 1) . a088323) a000040_list
-- Reinhard Zumkeller, Jan 22 2014
Reinhard Zumkeller, <a href="/A088323/b088323.txt">Table of n, a(n) for n = 2..10000</a>
approved
editing
_Reinhard Zumkeller (reinhard.zumkeller(AT)gmail.com), _, Nov 06 2003
nonn,base,new
Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystemsgmail.com), Nov 06 2003
Number of numbers b>1 such that n is a repunit in base b representation.
0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
2,6
is a(n) < 4 ?;
n>2: a(n) > 0 as n = (n-1)^1 + (n-1)^0.
Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>
a(31)=3: 31 = 2^4+2^3+2^2+2^1+2^0 = 3^3+3^1+3^0 = 30^1+30^0.
nonn,base
Reinhard Zumkeller (reinhard.zumkeller(AT)lhsystems.com), Nov 06 2003
approved