Stable Poincaré series [or Poincare series] for Lie group of type A (i.e., the variety of complex nonsingular k X k matrices with distinct eigenvalues).
Stable Poincaré series [or Poincare series] for Lie group of type A (i.e., the variety of complex nonsingular k X k matrices with distinct eigenvalues).
editing
approved
Stable Poincare Poincaré series for Lie group of type A (i.e. , the variety of complex nonsingular k X k matrices with distinct eigenvalues).
approved
editing
_N. J. A. Sloane (njas(AT)research.att.com), _, Oct 28 2004
G. I. Lehrer, <a href="/A098787/a098787.pdf">Some sequences arising at the interface of representation theory and homotopy theory</a>
nonn,easy,nice,new
G. I. Lehrer, <a href="http://www.research.att.com/~njas/sequences/a098787.pdf">Some sequences arising at the interface of representation theory and homotopy theory</a>
nonn,easy,nice,new
N. J. A. Sloane (njas, (AT)research.att.com), Oct 28 2004
Stable Poincare series for Lie group of type A (i.e. the variety of complex nonsingular k X k matrices with distinct eigenvalues).
1, 2, 2, 4, 8, 15, 27, 47, 85, 153, 268, 466, 818, 1430, 2475, 4273, 7377, 12701, 21786, 37282, 63719, 108719, 185085, 314537, 533861, 904861, 1531370, 2588298, 4369783, 7369174, 12413458, 20889007, 35118175, 58986118
0,2
Lehrer-Segal give a recurrence; both this reference and the Lehrer article give the first 50 terms.
G. I. Lehrer and G. B. Segal, Homology stability for classical regular semisimple varieties, Math. Zeit., 236 (2001), 251-290; p. 286.
G. I. Lehrer, <a href="http://www.research.att.com/~njas/sequences/a098787.pdf">Some sequences arising at the interface of representation theory and homotopy theory</a>
nonn,easy,nice
njas, Oct 28 2004
approved