proposed
approved
proposed
approved
editing
proposed
This is not an arbitrary thing to do, as in some cases the sporadic group has an order depending on a specific power, as with A001228(1) + 1 = 7921 = 89^2 and A001228(3) + 1 = 175561 = 419^2. The largest integer to check is 1 + the order of the monster group, which is the semiprime 808017424794512875886459904961710757 005754368000 000001 808017424794512875886459904961710757005754368000000001 = 18250906752127213 * 44272727693397225537389001926419 07427744272727693397225537389001926419074277.
This is not an arbitrary thing to do, as in some cases the spradic sporadic group has an order depending on a specific power, as with A001228(1) + 1 = 7921 = 89^2 and A001228(3) + 1 = 175561 = 419^2. The largest integer to check is the 1 + the order of ther the monster group, which is the semiprime 808017424794512875886459904961710757 005754368000 000001 = 18250906752127213 * 44272727693397225537389001926419 074277.
approved
editing
_Jonathan Vos Post (jvospost3(AT)gmail.com), _, Aug 21 2006
easy,fini,full,nonn,new
Jonathan Vos Post (jvospost2jvospost3(AT)yahoogmail.com), Aug 21 2006
7919, 604801, 10200959, 44351999, 44352001, 50232961, 244823041, 460815505919, 64561751654399, 4089470473293004801, 4157776806543360001, 86775571046077562879
1,1
This is not an arbitrary thing to do, as in some cases the spradic group has an order depending on a specific power, as with A001228(1) + 1 = 7921 = 89^2 and A001228(3) + 1 = 175561 = 419^2. The largest integer to check is the 1 + the order of ther monster group, which is the semiprime 808017424794512875886459904961710757 005754368000 000001 = 18250906752127213 * 44272727693397225537389001926419 074277.
a(1) = 7919 = A001228(1) - 1.
a(2) = 604801 = A001228(5) + 1.
a(3) = 10200959 = A001228(6) - 1.
a(4) = 44351999 = A001228(7) - 1.
a(5) = 44352001 = A001228(7) + 1.
a(6) = 50232961 = A001228(8) + 1.
a(7) = 244823041 = A001228(9) + 1.
a(8) = 460815505919 = A001228(14) + 1.
a(9) = 64561751654399 = A001228(17) - 1.
a(10) = 4089470473293004801 = A001228(21) + 1.
a(11) = 4157776806543360001 = A001228(22) + 1.
a(12) = 86775571046077562879 = A001228(23) - 1.
easy,fini,full,nonn
Jonathan Vos Post (jvospost2(AT)yahoo.com), Aug 21 2006
approved