_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 22 2007
_Paul D. Hanna (pauldhanna(AT)juno.com), _, Dec 22 2007
Triple factorial triangle, read by rows of 3n(n+1)/2+1 terms, where row n+1 is generated from row n by first inserting zeros in row n at positions {[m*(m+5)/6], m=0..3n-1} and then taking partial sums, starting with a '1' in row 0.
1, 1, 1, 1, 1, 4, 4, 4, 4, 3, 3, 2, 2, 1, 1, 28, 28, 28, 28, 24, 24, 20, 20, 16, 16, 12, 9, 9, 6, 4, 4, 2, 1, 1, 280, 280, 280, 280, 252, 252, 224, 224, 196, 196, 168, 144, 144, 120, 100, 100, 80, 64, 64, 48, 36, 27, 27, 18, 12, 8, 8, 4, 2, 1, 1, 3640, 3640, 3640, 3640, 3360
0,6
Column 0 forms the triple factorials A007559.
Triangle begins:
1;
1,1,1,1;
4,4,4,4,3,3,2,2,1,1;
28,28,28,28,24,24,20,20,16,16,12,9,9,6,4,4,2,1,1;
280,280,280,280,252,252,224,224,196,196,168,144,144,120,100,100,80,64,64,48,36,27
3640,3640,3640,3640,3360,3360,3080,3080,2800,2800,2520,2268,2268,2016,1792,1792,1568
...
To generate row 3, start with row 2:
[4,4,4,4,3,3,2,2,1,1];
insert zeros at positions [0,1,2,4,6,8,11,14,17] to get:
[0,0,0,4,0,4,0,4,0,4,3,0,3,2,0,2,1,0,1],
then take reverse partial sums (from right to left) to obtain row 3:
[28,28,28,28,24,24,20,20,16,16,12,9,9,6,4,4,2,1,1].
Continuing in this way will generate all the rows of this triangle.
(PARI) {T(n, k)=local(A=[1], B); if(n>0, for(i=1, n, m=1; B=[0, 0]; for(j=1, #A, if(j+m-1==(m*(m+7))\6, m+=1; B=concat(B, 0)); B=concat(B, A[j])); A=Vec(Polrev(Vec(Pol(B)/(1-x+O(x^#B))))))); if(k+1>#A, 0, A[k+1])}
nonn,tabl
Paul D. Hanna (pauldhanna(AT)juno.com), Dec 22 2007
approved