Leroy Quet , Apr 07 2008
Leroy Quet , Apr 07 2008
_Leroy Quet _ Apr 07 2008
Contribution from _Franklin T. Adams-Watters (FrankTAW(AT)Netscape.net), _, Apr 09 2009: (Start)
More terms from _Franklin T. Adams-Watters (FrankTAW(AT)Netscape.net), _, Apr 09 2009
Leroy Quet, <a href="http://www.prism-of-spirals.net/">Home Page</a> (listed in lieu of email address)
nonn,new
nonn
3, 5, 7, 9, 7, 9, 15, 17, 11, 13, 14, 16, 15, 5, 19, 33, 19, 21, 23, 7, 5, 25, 26, 28, 27, 29, 31, 33, 31, 33, 63, 35, 5, 7, 9, 41, 39, 5, 8, 46, 43, 45, 47, 9, 7, 49, 50, 52, 51, 5, 7, 57, 55, 7, 12, 10, 5, 61, 62, 64, 63, 9, 71, 69, 7, 69, 71, 7, 5, 73, 79, 81, 75, 5, 7, 11, 9, 81
Contribution from Franklin T. Adams-Watters (FrankTAW(AT)Netscape.net), Apr 09 2009: (Start)
(PARI) minpp(n)=local(m, r, pp); if(n==1, 1, m=factor(n); r=m[1, 1]^m[1, 2]; for(i=2, matsize(m)[1], pp=m[i, 1]^m[i, 2]; if(pp<r, r=pp)); r)
vector(80, i, minpp(i)+minpp(i+1)) (End)
more,nonn,new
nonn
More terms from Franklin T. Adams-Watters (FrankTAW(AT)Netscape.net), Apr 09 2009
Leroy Quet, <a href="http://www.prism-of-spirals.net/">Home Page</a> (listed in lieu of email address)
more,nonn,new
Leroy Quet (qq-quet(AT)mindspring.com), Apr 07 2008
a(n) = (smallest prime-power among the largest powers of each prime dividing n) + (smallest prime-power among the largest powers of each prime dividing (n+1)).
3, 5, 7, 9, 7, 9, 15, 17, 11, 13, 14, 16, 15, 5, 19, 33, 19, 21, 23, 7
1,1
The largest powers of each prime dividing 44 are 2^2 and 11^1. The least of these is 2^2 =4. The largest powers of each prime dividing 45 are 3^2 and 5^1. The least of these is 5^1 = 5. So a(44) = 4 + 5 = 9.
more,nonn
Leroy Quet (qq-quet(AT)mindspring.com), Apr 07 2008
approved