editing
approved
editing
approved
(* Calculation of constants {d, c} : *) {1/r, Sqrt[3*s/(Pi*(3*EllipticTheta[2, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s]^2 + 3*EllipticTheta[3, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]^2 + EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][2, 0, r*s] + EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][3, 0, r*s]))]/r} /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
(* Calculation of constants {d, c} : *) {1/r, Sqrt[3*s/(Pi*(3*EllipticTheta[2, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s]^2 + 3*EllipticTheta[3, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]^2 + EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][2, 0, r*s] + EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][3, 0, r*s]))]/r} /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3* Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3* Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
approved
editing
editing
approved
(* Calculation of constants {d, c} : *) {1/r, Sqrt[63*s/(2*Pi*(3*EllipticTheta[2, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s]^2 + 3*EllipticTheta[3, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]^2 + EllipticTheta[2, 0, r*s]^3* Derivative[0, 0, 2][EllipticTheta][2, 0, r*s] + EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][3, 0, r*s]))]/r} /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3* Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3* Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
approved
editing
editing
approved
(* Calculation of constant constants {d, c} : *) {1/r, Sqrt[6*s/(2*Pi*(3*EllipticTheta[2, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s]^2 + 3*EllipticTheta[3, 0, r*s]^2 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s]^2 + EllipticTheta[2, 0, r*s]^3* Derivative[0, 0, 2][EllipticTheta][2, 0, r*s] + EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 2][EllipticTheta][3, 0, r*s]))]/r } /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
(* Calculation of constant d: *) 1/r /. FindRoot[{24*s == 23 + EllipticTheta[2, 0, r*s]^4 + EllipticTheta[3, 0, r*s]^4, r*EllipticTheta[2, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][2, 0, r*s] + r*EllipticTheta[3, 0, r*s]^3 * Derivative[0, 0, 1][EllipticTheta][3, 0, r*s] == 6}, {r, 1/3}, {s, 1}, WorkingPrecision -> 120] (* Vaclav Kotesovec, Sep 27 2023 *)
a(n) ~ c * d^n / n^(3/2), where d = 4.83361837854808845493127190842423391826598301272368919050344408629988519... and c = 0.506244425594072156224012562189085656331596921281799036166665... - Vaclav Kotesovec, Sep 27 2023
approved
editing
proposed
approved