proposed
approved
proposed
approved
editing
proposed
# Maple code based on R. J. Mathar's code for A171797:
proposed
editing
editing
proposed
(Python)
def a(n):
s = str(n)
e = sum(1 for c in s if c in "02468")
return int(str(e) + str(len(s)) + str(len(s)-e))
print([a(n) for n in range(55)]) # Michael S. Branicky, Mar 29 2022
approved
editing
A modified Sisyphus function: a(n) = concatenation of (number of even digits in n) (number of even digits in n) (number of odd digits in n).
110, 101, 11, 110, 101, 11, 110, 101, 11, 110, 101, 11, 110, 101, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 11, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 211, 121, 220, 211, 121, 220, 211, 121, 220, 211, 121, 220, 211, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 121, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 220, 211, 121, 220, 211, 121, 220, 211, 121, 220, 211, 121, 220, 211, 211, 202, 211121, 121, 22, 121, 22, 121
If we start with n and repeatedly apply the map i -> a(i), we eventually reach 312 132 (see A073054).
11 has 2 digits, both odd, so a(11)=20222 (leading zeros are omitted).
12 has 2 digits, one even and one odd, so a(12)=211121. Then a(211121) = 312132.
Maple code based on R. J. Mathar's code for A171797:
nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
A308003 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1, n1-n2]) ; end proc:
seq(A308003(n), n=0..80) ;
nonn,base,easy,changed
Corrected the definition of the sequence.
Modified the terms in the sequence with the corrected definition.
Corrected by Matthew E. Coppenbarger.
Reason: The original Sisyphus function allowed leading digits to be 0. The cited reference defined the modified Sisyphus function to avoid that. The first component should be (the number of digits of n) - this term is never zero.
Removed program: I'm not confident with changing the code, so I deleted it until someone else can provide the correction.
editing
approved
A modified Sisyphus function: a(n) = concatenation of (number of even digits in n) (number of even digits in n) (number of odd digits in n).
110, 11, 101, 110, 11, 101, 110, 11, 101, 110, 11, 101, 110, 11, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 101, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 121, 211, 220, 121, 211, 220, 121, 211, 220, 121, 211, 220, 121, 121, 22, 121, 22, 121, 22, 121, 22, 121, 22, 211, 211, 202, 211, 202, 211, 202, 211, 202, 211, 202, 220, 121, 211, 220, 121, 211, 220, 121, 211, 220, 121, 211, 220, 121, 121, 22, 121, 22, 121211, 211, 202, 211
If we start with n and repeatedly apply the map i -> a(i), we eventually reach 132 312 (see A073054).
11 has 2 digits, both odd, so a(11)=22 (leading zeros are omitted)202.
12 has 2 digits, one even and one odd, so a(12)=121211. Then a(121211) = 132312.
Maple code based on R. J. Mathar's code for A171797:
nevenDgs := proc(n) local a, d; a := 0 ; for d in convert(n, base, 10) do if type(d, 'even') then a :=a +1 ; end if; end do; a ; end proc:
cat2 := proc(a, b) local ndigsb; ndigsb := max(ilog10(b)+1, 1) ; a*10^ndigsb+b ; end:
catL := proc(L) local a, i; a := op(1, L) ; for i from 2 to nops(L) do a := cat2(a, op(i, L)) ; end do; a; end proc:
A055642 := proc(n) max(1, ilog10(n)+1) ; end proc:
A308003 := proc(n) local n1, n2 ; n1 := A055642(n) ; n2 := nevenDgs(n) ; catL([n2, n1, n1-n2]) ; end proc:
seq(A308003(n), n=0..80) ;
Corrected the definition of the sequence.
Modified the terms in the sequence with the corrected definition.
Corrected by Matthew E. Coppenbarger.
Reason: The original Sisyphus function allowed leading digits to be 0. The cited reference defined the modified Sisyphus function to avoid that. The first component should be (the number of digits of n) - this term is never zero.
Removed program: I'm not confident with changing the code, so I deleted it until someone else can provide the correction.
approved
editing
editing
approved
seq(A308003(n), n=10..80) ;
approved
editing
N. J. A. Sloane, <a href="/A308003/b308003_1.txt">Table of n, a(n) for n = 0..28000</a>