(Translated by https://www.hiragana.jp/)
A001468 -id:A001468 - OEIS
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a001468 -id:a001468
Displaying 1-10 of 30 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A280511 Index sequence of the block-fractal sequence A001468. +20
9
2, 2, 5, 5, 5, 5, 5, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89, 89 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
The index sequence (a(n)) of a block-fractal sequence (s(n)) is defined here by a(n) = least k > 0 such that (s(k), s(k+1), ..., s(k+n)) = (s(0), s(1), ..., s(n)). Following are definitions of block-fractal, reverse block-fractal, complementary block-fractal, and reverse complementary block-fractal, as pertain to any sequence s = (s(n)): s is block-fractal if every finite block s* of consecutive terms in s occurs more than once in s, and reverse block-fractal if reversal(s*) occurs in s; a zero-one sequence s is complement block-fractal if 1-s* occurs in s for every finite block S* of consecutive terms in s, and reverse complement block-fractal if reverse(1-s*) occurs in s.
Clearly each of the 4 containment conditions holds for all blocks s* if it holds for every initial block in s. Moreover, in all 4 cases, such a sequence s* occurs infinitely many times in s. This proper containment of infinitely many identical copies is comparable to proper containment of similar images in geometric fractals, hence the use of the word "fractal" for sequences.
The standard term for "block-fractal sequence" in the combinatorics on words literature is "recurrent sequence". The standard term for "reverse block-fractal" is "mirror-invariant". - Jeffrey Shallit, May 28 2023
LINKS
FORMULA
Concatenate F(2n+1) copies of F(2n+1), for n >= 1, where F = A000045, the Fibonacci numbers.
EXAMPLE
A001468 = (1,2,1,2,2,1,2,1,2,2,1,2,2,...) = (s(0), s(1), ... ).
(initial block #1) = (1) first repeats at s(2), so that a(1) = 2;
(initial block #2) = (1,2) first repeats at s(2), so that a(2) = 2;
(initial block #3) = (1,2,1) first repeats at s(5), so that a(3) = 5.
MATHEMATICA
r = GoldenRatio; seq = Table[Floor[(n + 1) r] - Floor[n r], {n, 0, 300}] (*A001468*)
seq = StringJoin[Map[ToString, seq]]
u = -1 + Most[Flatten[Rest[Reap[NestWhile[# + 1 &, 1, Sow[First[Last[StringPosition[seq, StringTake[seq, #], 2]]]] >
1 &]]]]] (* A280511, Peter J. C. Moses, Jan 05 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 06 2017
STATUS
approved
A280513 Index sequence of the reverse block-fractal sequence A001468. +20
3
1, 2, 1, 5, 4, 3, 2, 1, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 89, 88, 87, 86, 85, 84, 83, 82, 81, 80, 79, 78, 77, 76, 75, 74 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
The sequence is the concatenation of blocks, the n-th of which, for n >= 1, consists of the integers from F(2n+1) down to F(2) = 1, where F = A000045, the Fibonacci numbers. See A280511 for the definition of reverse block-fractal sequence. The index sequence (a(n)) of a reverse block-fractal sequence (s(n)) is defined here by a(n) = least k > 0 such that (s(k), s(k+1), ..., s(k+n)) = (s(n), s(n-1), ..., s(1)).
Let W be the Fibonacci word A096270. Then a(n) = least k such that the reversal of the first n-block in W occurs in W beginning at the k-th term. Since (a(n)) is unbounded, the reversal of every block in W occurs infinitely many times in W. - Clark Kimberling, Dec 17 2020
LINKS
EXAMPLE
A001468 = (1,2,1,2,2,1,2,1,2,2,1,2,2,...) = (s(1), s(2), ... ).
(init. block #1) = (1); reversal (1) first occurs at s(1), so a(1) = 1;
(init. block #2) = (1,2); rev. (2,1) first occurs at s(2), so a(2) = 2;
(init. block #3) = (1,2,1); rev. (1,2,1) first occurs at s(1), so a(3) = 1;
(init. block #4) = (1,2,1,2); rev. (2,1,2,1) first occurs at s(5), so a(4) = 5.
MATHEMATICA
r = GoldenRatio; t = Table[Floor[(n + 1) r] - Floor[n*r], {n, 0, 420}]
u = StringJoin[Map[ToString, t]]; breverse[seq_] :=
Flatten[Last[Reap[NestWhile[# + 1 &, 1, (StringLength[
str = StringTake[seq, Min[StringLength[seq], #]]] == # && ! (Sow[
StringPosition[seq, StringReverse[str], 1][[1]][[1]]]) === {}) &]]]];
breverse[u] (* Peter J. C. Moses, Jan 02 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jan 06 2017
STATUS
approved
A014677 First differences of A001468. +20
2
1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1, 0, -1, 1, 0, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
A001468 is an infinite Fibonacci word with strings of 2's of length A001468(n) delimited by 1's. - Paul D. Hanna, Dec 17 2004
c(n):=a(n-1), n >= 1, is -1 if n is a Wythoff B-number from A001950, it is 0 if n=A(B(m)+1) for some m >= 1, with A(k):=A000201(k) (Wythoff A-numbers) and it is +1 if n=A(A(m)+1)=B(m)+1 for some m >= 0, with B(0):=0. - Wolfdieter Lang, Oct 13 2006
This sequence is a symbolic sequence as discussed in the paper "Morphisms, Symbolic Sequences, and Their Standard Forms". It can be derived directly from the 2-block morphism induced by the morphism generating A001468. Since A001468 is the Fibonacci word A003849, but on the alphabet {2,1}, with an extra 1 in front, this 2-block morphism has 3-symbol Fibonacci as a fixed point: A270788. The 2-blocks in A001468 are 12, 21, and 22, yielding the differences a(n) = 1, a(n) = -1, and a(n) = 0. In 3-symbol Fibonacci these correspond to the letters 2, 1, and 3. Expressing this coding with pi given by pi(1)=-1, pi(2)=1, pi(3)=0, we obtain the formula below. Wolfdieter Lang's Wythoff description of (a(n)) follows from the corresponding Wythoff description in A270788. - Michel Dekking, Dec 30 2019
LINKS
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
FORMULA
abs(a(n)) = floor(f*ceiling(n/f)) - ceiling(f*floor(n/f)) where f=phi=(1+sqrt(5))/2; for n > 1, abs(a(n)) = A005713(n-1). - Benoit Cloitre, Apr 21 2003
G.f. equals the continued fraction: A(x) = [0;1, 1/x, 1/x, 1/x^2, 1/x^3, 1/x^5, 1/x^8, ..., 1/x^Fibonacci(n), ...]. - Paul D. Hanna, Dec 17 2004
a(n) = b(n) - b(n-1) with b(n):=A005614(n), n >= 1.
a(n) = pi(A270788(n)), n >= 1, where pi is the letter-to-letter map pi(1)=-1, pi(2)=1, pi(3)=0. - Michel Dekking, Dec 30 2019
PROG
(Python)
from math import isqrt
def A014677(n): return (n+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)&-2)+(n+isqrt(m-20*n-20)>>1)+1 # Chai Wah Wu, Aug 25 2022
CROSSREFS
Cf. A001468, A000045. Essentially equal to A270788.
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 07 2001
STATUS
approved
A000201 Lower Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi), where phi = (1+sqrt(5))/2 = A001622.
(Formerly M2322 N0917)
+10
310
1, 3, 4, 6, 8, 9, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 27, 29, 30, 32, 33, 35, 37, 38, 40, 42, 43, 45, 46, 48, 50, 51, 53, 55, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 88, 90, 92, 93, 95, 97, 98, 100, 101, 103, 105, 106, 108, 110 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
This is the unique sequence a satisfying a'(n)=a(a(n))+1 for all n in the set N of natural numbers, where a' denotes the ordered complement (in N) of a. - Clark Kimberling, Feb 17 2003
This sequence and A001950 may be defined as follows. Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
These are the numbers whose lazy Fibonacci representation (see A095791) includes 1; the complementary sequence (the upper Wythoff sequence, A001950) are the numbers whose lazy Fibonacci representation includes 2 but not 1.
a(n) is the unique monotonic sequence satisfying a(1)=1 and the condition "if n is in the sequence then n+(rank of n) is not in the sequence" (e.g. a(4)=6 so 6+4=10 and 10 is not in the sequence) - Benoit Cloitre, Mar 31 2006
Write A for A000201 and B for A001950 (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB,...,BBB,... appear in many complementary equations having solution A000201 (or equivalently, A001950). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Cumulative sum of A001468 terms. - Eric Angelini, Aug 19 2008
The lower Wythoff sequence also can be constructed by playing the so-called Mancala-game: n piles of total d(n) chips are standing in a row. The piles are numbered from left to right by 1, 2, 3, ... . The number of chips in a pile at the beginning of the game is equal to the number of the pile. One step of the game is described as follows: Distribute the pile on the very left one by one to the piles right of it. If chips are remaining, build piles out of one chip subsequently to the right. After f(n) steps the game ends in a constant row of piles. The lower Wythoff sequence is also given by n -> f(n). - Roland Schroeder (florola(AT)gmx.de), Jun 19 2010
With the exception of the first term, a(n) gives the number of iterations required to reverse the list {1,2,3,...,n} when using the mapping defined as follows: remove the first term of the list, z(1), and add 1 to each of the next z(1) terms (appending 1's if necessary) to get a new list. See A183110 where this mapping is used and other references given. This appears to be essentially the Mancala-type game interpretation given by R. Schroeder above. - John W. Layman, Feb 03 2011
Also row numbers of A213676 starting with an even number of zeros. - Reinhard Zumkeller, Mar 10 2013
From Jianing Song, Aug 18 2022: (Start)
Numbers k such that {k*phi} > phi^(-2), where {} denotes the fractional part.
Proof: Write m = floor(k*phi).
If {k*phi} > phi^(-2), take s = m-k+1. From m < k*phi < m+1 we have k < (m-k+1)*phi < k + phi, so floor(s*phi) = k or k+1. If floor(s*phi) = k+1, then (see A003622) floor((k+1)*phi) = floor(floor(s*phi)*phi) = floor(s*phi^2)-1 = s+floor(s*phi)-1 = m+1, but actually we have (k+1)*phi > m+phi+phi^(-2) = m+2, a contradiction. Hence floor(s*phi) = k.
If floor(s*phi) = k, suppose otherwise that k*phi - m <= phi^(-2), then m < (k+1)*phi <= m+2, so floor((k+1)*phi) = m+1. Suppose that A035513(p,q) = k for p,q >= 1, then A035513(p,q+1) = floor((k+1)*phi) - 1 = m = A035513(s,1). But it is impossible for one number (m) to occur twice in A035513. (End)
The formula from Jianing Song above is a direct consequence of an old result by Carlitz et al. (1972). Their Theorem 11 states that (a(n)) consists of the numbers k such that {k*phi^(-2)} < phi^(-1). One has {k*phi^(-2)} = {k*(2-phi)} = {-k*phi}. Using that 1-phi^(-1) = phi^(-2), the Jianing Song formula follows. - Michel Dekking, Oct 14 2023
REFERENCES
Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, date?
M. Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
LINKS
J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
J.-P. Allouche, J. Shallit, and G. Skordev, Self-generating sets, integers with missing blocks and substitutions, Discrete Math. 292 (2005) 1-15.
Peter G. Anderson, The Fibonacci word as a 2-adic number and its continued fraction, Fibonacci Quarterly (2020) Vol. 58, No. 5, 21-24.
Joerg Arndt, Matters Computational (The Fxtbook), pp.756-757.
Shiri Artstein-Avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty, Discr. Math. 308 (2008), 4578-4588.
Shiri Artstein-avidan, Aviezri S. Fraenkel, and Vera T. Sos, A two-parameter family of an extension of Beatty sequences, Discrete Math., 308 (2008), 4578-4588.
E. J. Barbeau, J. Chew, and S. Tanny, A matrix dynamics approach to Golomb's recursion, Electronic J. Combinatorics, #4.1 16 1997.
M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.
L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart., Vol. 10, No. 1 (1972), pp. 1-28.
L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
B. Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
B. Cloitre, N. J. A. Sloane, and M. J. Vandermast, Numerical analogues of Aronson's sequence, arXiv:math/0305308 [math.NT], 2003.
I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences.
H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
P. J. Downey and R. E. Griswold, On a family of nested recurrences, Fib. Quart., 22 (1984), 310-317.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014.
A. S. Fraenkel, The bracket function and complementary sets of integers, Canadian J. of Math. 21 (1969) 6-27. [History, references, generalization]
A. S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, 89 (1982), 353-361 (the case a=1).
A. S. Fraenkel, Ratwyt, December 28 2011.
David Garth and Adam Gouge, Affinely Self-Generating Sets and Morphisms, Journal of Integer Sequences, Article 07.1.5, 10 (2007) 1-13.
M. Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, 118 (2011), 497-507.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), #15.11.8.
Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette (2018) Vol. 102, Issue 554, Article 102.36, 348-350.
H. Grossman, A set containing all integers, Amer. Math. Monthly, 69 (1962), 532-533.
A. J. Hildebrand, Junxian Li, Xiaomin Li, and Yun Xie, Almost Beatty Partitions, arXiv:1809.08690 [math.NT], 2018.
T. Karki, A. Lacroix, and M. Rigo, On the recognizability of self-generating sets, JIS 13 (2010) #10.2.2.
Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.
Clark Kimberling, Matrix Transformations of Integer Sequences, J. Integer Seqs., Vol. 6, 2003.
Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences, 11 (2008) 08.3.3.
Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13.
Clark Kimberling, Problem Proposals, The Fibonacci Quarterly, vol. 52 #5, 2015, p5-14.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
C. Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337.[See A317208 for a link.]
U. Larsson and N. Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
R. J. Mathar, Graphical representation among sequences closely related to this one (cf. N. J. A. Sloane, "Families of Essentially Identical Sequences").
D. J. Newman, Problem 3117, Amer. Math. Monthly, 34 (1927), 158-159.
D. J. Newman, Problem 5252, Amer. Math. Monthly, 72 (1965), 1144-1145.
Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff’s game, pages 377-410 in "Games of No Chance 3, MSRI Publications Volume 56, 2009.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol 49, Number 2, May 2011.
Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, Classic Sequences
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull. 19 (1976) pp. 473-482.
Richard Southwell and Jianwei Huang, Complex Networks from Simple Rewrite Systems, arXiv preprint arXiv:1205.0596 [cs.SI], 2012. - N. J. A. Sloane, Oct 13 2012
X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., 300 (2005), 180-195.
J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., 27 (1989), 76-86.
Eric Weisstein's World of Mathematics, Beatty Sequence
Eric Weisstein's World of Mathematics, Golden Ratio
Eric Weisstein's World of Mathematics, Rabbit Constant
Eric Weisstein's World of Mathematics, Wythoff's Game
Eric Weisstein's World of Mathematics, Wythoff Array
FORMULA
Zeckendorf expansion of n (cf. A035517) ends with an even number of 0's.
Other properties: a(1)=1; for n>1, a(n) is taken to be the smallest integer greater than a(n-1) which is consistent with the condition "n is in the sequence if and only if a(n)+1 is not in the sequence".
a(1) = 1; for n>0, a(n+1) = a(n)+1 if n is not in the sequence, a(n+1) = a(n)+2 if n is in the sequence.
a(a(n)) = floor(n*phi^2) - 1 = A003622(n).
{a(k)} union {a(k)+1} = {1, 2, 3, 4, ...}. Hence a(1) = 1; for n>1, a(a(n)) = a(a(n)-1)+2, a(a(n)+1) = a(a(n))+1. - Benoit Cloitre, Mar 08 2003
{a(n)} is a solution to the recurrence a(a(n)+n) = 2*a(n)+n, a(1)=1 (see Barbeau et al.).
a(n) = A001950(n) - n. - Philippe Deléham, May 02 2004
a(0) = 0; a(n) = n + Max_{k : a(k) < n}. - Vladeta Jovovic, Jun 11 2004
a(Fibonacci(r-1)+j) = Fibonacci(r)+a(j) for 0 < j <= Fibonacci(r-2); 2 < r. - Paul Weisenhorn, Aug 18 2012
With 1 < k and A001950(k-1) < n <= A001950(k): a(n) = 2*n-k; A001950(n) = 3*n-k. - Paul Weisenhorn, Aug 21 2012
EXAMPLE
From Roland Schroeder (florola(AT)gmx.de), Jul 13 2010: (Start)
Example for n = 5; a(5) = 8;
(Start: [1,2,3,4,5]; 8 steps until [5,4,3,2,1]):
[1,2,3,4,5]; [3,3,4,5]; [4,5,6]; [6,7,1,1]; [8,2,2,1,1,1]: [3,3,2,2,2,1,1,1]; [4,3,3,2,1,1,1]; [4,4,3,2,1,1]; [5,4,3,2,1]. (End)
MAPLE
Digits := 100; t := evalf((1+sqrt(5))/2); A000201 := n->floor(t*n);
MATHEMATICA
Table[Floor[N[n*(1+Sqrt[5])/2]], {n, 1, 75}]
Array[ Floor[ #*GoldenRatio] &, 68] (* Robert G. Wilson v, Apr 17 2010 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+1)/2)
(PARI) a(n)=(n+sqrtint(5*n^2))\2 \\ Charles R Greathouse IV, Feb 07 2013
(Maxima) makelist(floor(n*(1+sqrt(5))/2), n, 1, 60); /* Martin Ettl, Oct 17 2012 */
(Haskell)
a000201 n = a000201_list !! (n-1)
a000201_list = f [1..] [1..] where
f (x:xs) (y:ys) = y : f xs (delete (x + y) ys)
-- Reinhard Zumkeller, Jul 02 2015, Mar 10 2013
(Python)
def aupton(terms):
alst, aset = [None, 1], {1}
for n in range(1, terms):
an = alst[n] + (1 if n not in aset else 2)
alst.append(an); aset.add(an)
return alst[1:]
print(aupton(68)) # Michael S. Branicky, May 14 2021
(Python)
from math import isqrt
def A000201(n): return (n+isqrt(5*n**2))//2 # Chai Wah Wu, Jan 11 2022
CROSSREFS
a(n) = least k such that s(k) = n, where s = A026242. Complement of A001950. See also A058066.
The permutation A002251 maps between this sequence and A001950, in that A002251(a(n)) = A001950(n), A002251(A001950(n)) = a(n).
First differences give A014675. a(n) = A022342(n) + 1 = A005206(n) + n + 1. a(2n)-a(n)=A007067(n). a(a(a(n)))-a(n) = A026274(n-1). - Benoit Cloitre, Mar 08 2003
A185615 gives values n such that n divides A000201(n)^m for some integer m>0.
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
Bisections: A276854, A342279.
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A001950 Upper Wythoff sequence (a Beatty sequence): a(n) = floor(n*phi^2), where phi = (1+sqrt(5))/2.
(Formerly M1332 N0509)
+10
251
2, 5, 7, 10, 13, 15, 18, 20, 23, 26, 28, 31, 34, 36, 39, 41, 44, 47, 49, 52, 54, 57, 60, 62, 65, 68, 70, 73, 75, 78, 81, 83, 86, 89, 91, 94, 96, 99, 102, 104, 107, 109, 112, 115, 117, 120, 123, 125, 128, 130, 133, 136, 138, 141, 143, 146, 149, 151, 154, 157 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Indices at which blocks (1;0) occur in infinite Fibonacci word; i.e., n such that A005614(n-2) = 0 and A005614(n-1) = 1. - Benoit Cloitre, Nov 15 2003
A000201 and this sequence may be defined as follows: Consider the maps a -> ab, b -> a, starting from a(1) = a; then A000201 gives the indices of a, A001950 gives the indices of b. The sequence of letters in the infinite word begins a, b, a, a, b, a, b, a, a, b, a, ... Setting a = 0, b = 1 gives A003849 (offset 0); setting a = 1, b = 0 gives A005614 (offset 0). - Philippe Deléham, Feb 20 2004
a(n) = n-th integer which is not equal to the floor of any multiple of phi, where phi = (1+sqrt(5))/2 = golden number. - Philippe LALLOUET (philip.lallouet(AT)wanadoo.fr), May 09 2007
Write A for A000201 and B for the present sequence (the upper Wythoff sequence, complement of A). Then the composite sequences AA, AB, BA, BB, AAA, AAB, ..., BBB, ... appear in many complementary equations having solution A000201 (or equivalently, the present sequence). Typical complementary equations: AB=A+B (=A003623), BB=A+2B (=A101864), BBB=3A+5B (=A134864). - Clark Kimberling, Nov 14 2007
Apart from the initial 0 in A090909, is this the same as that sequence? - Alec Mihailovs (alec(AT)mihailovs.com), Jul 23 2007
If we define a base-phi integer as a positive number whose representation in the golden ratio base consists only of nonnegative powers of phi, and if these base-phi integers are ordered in increasing order (beginning 1, phi, ...), then it appears that the difference between the n-th and (n-1)-th base-phi integer is phi-1 if and only if n belongs to this sequence, and the difference is 1 otherwise. Further, if each base-phi integer is written in linear form as a + b*phi (for example, phi^2 is written as 1 + phi), then it appears that there are exactly two base-phi integers with b=n if and only if n belongs to this sequence, and exactly three base-phi integers with b=n otherwise. - Geoffrey Caveney, Apr 17 2014
Numbers with an odd number of trailing zeros in their Zeckendorf representation (A014417). - Amiram Eldar, Feb 26 2021
Numbers missing from A066096. - Philippe Deléham, Jan 19 2023
REFERENCES
Claude Berge, Graphs and Hypergraphs, North-Holland, 1973; p. 324, Problem 2.
Eric Friedman, Scott M. Garrabrant, Ilona K. Phipps-Morgan, A. S. Landsberg and Urban Larsson, Geometric analysis of a generalized Wythoff game, in Games of no Chance 5, MSRI publ. Cambridge University Press, 2019.
Martin Gardner, Penrose Tiles to Trapdoor Ciphers, W. H. Freeman, 1989; see p. 107.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
I. M. Yaglom, Two games with matchsticks, pp. 1-7 of Qvant Selecta: Combinatorics I, Amer Math. Soc., 2001.
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Jean-Paul Allouche and F. Michel Dekking, Generalized Beatty sequences and complementary triples, Moscow Journal of Combinatorics and Number Theory, Vol. 8, No. 4 (2019), pp. 325-341; arXiv preprint, arXiv:1809.03424 [math.NT], 2018-2019.
L. Carlitz, R. Scoville, and T. Vaughan, Some arithmetic functions related to Fibonacci numbers, Fib. Quart., 11 (1973), 337-386.
I. G. Connell, Some properties of Beatty sequences I, Canad. Math. Bull., 2 (1959), 190-197.
H. S. M. Coxeter, The Golden Section, Phyllotaxis and Wythoff's Game, Scripta Math. 19 (1953), 135-143. [Annotated scanned copy]
F. Michel Dekking, Jeffrey Shallit, and N. J. A. Sloane, Queens in exile: non-attacking queens on infinite chess boards, Electronic J. Combin., 27:1 (2020), #P1.52.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, 43 pages, no date, unpublished.
Eric Duchene, Aviezri S. Fraenkel, Vladimir Gurvich, Nhan Bao Ho, Clark Kimberling, and Urban Larsson, Wythoff Wisdom, unpublished, no date [Cached copy, with permission]
Robbert Fokkink, The Pell Tower and Ostronometry, arXiv:2309.01644 [math.CO], 2023.
Nathan Fox, On Aperiodic Subtraction Games with Bounded Nim Sequence, arXiv preprint arXiv:1407.2823 [math.CO], 2014
Aviezri S. Fraenkel, How to beat your Wythoff games' opponent on three fronts, Amer. Math. Monthly, Vol. 89 (1982), pp. 353-361 (the case a=1).
Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
Aviezri S. Fraenkel, Ratwyt, December 28 2011.
Aviezri S. Fraenkel, Complementary iterated floor words and the Flora game, SIAM J. Discrete Math., Vol. 24, No. 2 (2010), pp. 570-588. - N. J. A. Sloane, May 06 2011
Martin Griffiths, The Golden String, Zeckendorf Representations, and the Sum of a Series, Amer. Math. Monthly, Vol. 118 (2011), pp. 497-507.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, Vol. 18 (2015), Article #15.11.8.
Martin Griffiths, A difference property amongst certain pairs of Beatty sequences, The Mathematical Gazette, Vol. 102, Issue 554 (2018), Article 102.36, pp. 348-350.
Tomi Kärki, Anne Lacroix, and Michel Rigo, On the recognizability of self-generating sets, JIS, Vol. 13 (2010), Article #10.2.2.
Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, Vol. 3 (2000), Article #00.2.8.
Clark Kimberling, Complementary Equations, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.4.
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, Vol. 123, No. 2 (2016), pp. 267-273.
Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (eds.), Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
Urban Larsson and Nathan Fox, An Aperiodic Subtraction Game of Nim-Dimension Two, Journal of Integer Sequences, 2015, Vol. 18, #15.7.4.
A. J. Macfarlane, On the fibbinary numbers and the Wythoffarray, arXiv:2405.18128 [math.CO], 2024. See page 2.
D. J. Newman, Problem 5252, Amer. Math. Monthly, Vol. 72, No. 10 (1965), pp. 1144-1145.
Gabriel Nivasch, More on the Sprague-Grundy function for Wythoff’s game, pages 377-410 in "Games of No Chance 3, MSRI Publications Volume 56, 2009.
R. J. Nowakowski, Generalizations of the Langford-Skolem problem, M.S. Thesis, Dept. Math., Univ. Calgary, May 1975. [Scanned copy, with permission.]
Michel Rigo, Invariant games and non-homogeneous Beatty sequences, Slides of a talk, Journée de Mathématiques Discrètes, 2015.
Vincent Russo and Loren Schwiebert, Beatty Sequences, Fibonacci Numbers, and the Golden Ratio, The Fibonacci Quarterly, Vol. 49, No. 2 (May 2011), pp. 151-154.
Luke Schaeffer, Jeffrey Shallit, and Stefan Zorcic, Beatty Sequences for a Quadratic Irrational: Decidability and Applications, arXiv:2402.08331 [math.NT], 2024.
Jeffrey Shallit, Sumsets of Wythoff Sequences, Fibonacci Representation, and Beyond, arXiv:2006.04177 [math.CO], 2020.
Jeffrey Shallit, Frobenius Numbers and Automatic Sequences, arXiv:2103.10904 [math.NT], 2021.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
K. B. Stolarsky, Beatty sequences, continued fractions, and certain shift operators, Canadian Math. Bull., Vol. 19 (1976), pp. 473-482.
X. Sun, Wythoff's sequence and N-Heap Wythoff's conjectures, Discr. Math., Vol. 300 (2005), pp. 180-195.
J. C. Turner, The alpha and the omega of the Wythoff pairs, Fib. Q., Vol. 27 (1989), pp. 76-86.
Eric Weisstein's World of Mathematics, Beatty Sequence.
Eric Weisstein's World of Mathematics, Golden ratio.
Eric Weisstein's World of Mathematics, Wythoff's Game.
Eric Weisstein's World of Mathematics, Wythoff Array.
FORMULA
a(n) = n + floor(n*phi). In general, floor(n*phi^m) = Fibonacci(m-1)*n + floor(Fibonacci(m)*n*phi). - Benoit Cloitre, Mar 18 2003
a(n) = n + floor(n*phi) = n + A000201(n). - Paul Weisenhorn and Philippe Deléham
Append a 0 to the Zeckendorf expansion (cf. A035517) of n-th term of A000201.
a(n) = A003622(n) + 1. - Philippe Deléham, Apr 30 2004
a(n) = Min(m: A134409(m) = A006336(n)). - Reinhard Zumkeller, Oct 24 2007
If a'=A000201 is the ordered complement (in N) of {a(n)}, then a(Fib(r-2) + j) = Fib(r) + a(j) for 0 < j <= Fib(r-2), 3 < r; and a'(Fib(r-1) + j) = Fib(r) + a'(j) for 0 < j <= Fib(r-2), 2 < r. - Paul Weisenhorn, Aug 18 2012
With a(1)=2, a(2)=5, a'(1)=1, a'(2)=3 and 1 < k and a(k-1) < n <= a(k) one gets a(n)=3*n-k, a'(n)=2*n-k. - Paul Weisenhorn, Aug 21 2012
EXAMPLE
From Paul Weisenhorn, Aug 18 2012 and Aug 21 2012: (Start)
a(14) = floor(14*phi^2) = 36; a'(14) = floor(14*phi)=22;
with r=9 and j=1: a(13+1) = 34 + 2 = 36;
with r=8 and j=1: a'(13+1) = 21 + 1 = 22.
k=6 and a(5)=13 < n <= a(6)=15
a(14) = 3*14 - 6 = 36; a'(14) = 2*14 - 6 = 22;
a(15) = 3*15 - 6 = 39; a'(15) = 2*15 - 6 = 24. (End)
MAPLE
A001950 := proc(n)
floor(n*(3+sqrt(5))/2) ;
end proc:
seq(A001950(n), n=0..40) ; # R. J. Mathar, Jul 16 2024
MATHEMATICA
Table[Floor[N[n*(1+Sqrt[5])^2/4]], {n, 1, 75}]
Array[ Floor[ #*GoldenRatio^2] &, 60] (* Robert G. Wilson v, Apr 17 2010 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+3)/2)
(PARI) A001950(n)=(sqrtint(n^2*5)+n*3)\2 \\ M. F. Hasler, Sep 17 2014
(Haskell)
a001950 n = a000201 n + n -- Reinhard Zumkeller, Mar 10 2013
(Magma) [Floor(n*((1+Sqrt(5))/2)^2): n in [1..80]]; // Vincenzo Librandi, Nov 19 2016
(Python)
from math import isqrt
def A001950(n): return (n+isqrt(5*n**2)>>1)+n # Chai Wah Wu, Aug 10 2022
CROSSREFS
a(n) = greatest k such that s(k) = n, where s = A026242.
Complement of A000201 or A066096.
A002251 maps between A000201 and A001950, in that A002251(A000201(n)) = A001950(n), A002251(A001950(n)) = A000201(n).
Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864.
First differences give (essentially) A076662.
Bisections: A001962, A001966.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,easy,nice,changed
AUTHOR
EXTENSIONS
Corrected by Michael Somos, Jun 07 2000
STATUS
approved
A003849 The infinite Fibonacci word (start with 0, apply 0->01, 1->0, take limit). +10
209
0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
A Sturmian word.
Define strings S(0)=0, S(1)=01, S(n)=S(n-1)S(n-2); iterate; sequence is S(infinity). If the initial 0 is omitted from S(n) for n>0, we obtain A288582(n+1).
The 0's occur at positions in A022342 (i.e., A000201 - 1), the 1's at positions in A003622.
Replace each run (1;1) with (1;0) in the infinite Fibonacci word A005614 (and add 0 as prefix) A005614 begins: 1,0,1,1,0,1,0,1,1,0,1,1,... changing runs (1,1) with (1,0) produces 1,0,0,1,0,1,0,0,1,0,0,1,... - Benoit Cloitre, Nov 10 2003
Characteristic function of A003622. - Philippe Deléham, May 03 2004
The fraction of 0's in the first n terms approaches 1/phi (see for example Allouche and Shallit). - N. J. A. Sloane, Sep 24 2007
The limiting mean and variance of the first n terms are 2-phi and 2*phi-3, respectively. - Clark Kimberling, Mar 12 2014, Aug 16 2018
Let S(n) be defined as above. Then this sequence is S(1) + Sum_{n=0..} S(n), where the addition of strings represents concatenation. - Isaac Saffold, May 03 2019
The word is a concatenation of three runs: 0, 1, and 00. The limiting proportions of these are respectively 1 - phi/2, 1/2, and (phi - 1)/2. The mean runlength is (phi + 1)/2. - Clark Kimberling, Dec 26 2010
From Amiram Eldar, Mar 10 2021: (Start)
a(n) is the number of the trailing 0's in the dual Zeckendorf representation of (n+1) (A104326).
The asymptotic density of the occurrences of k (0 or 1) is 1/phi^(k+1), where phi is the golden ratio (A001622).
The asymptotic mean of this sequence is 1/phi^2 (A132338). (End)
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
Jean Berstel, Fibonacci words—a survey, In The book of L, pp. 13-27. Springer Berlin Heidelberg, 1986.
J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc. - see p. 64.
Wolfdieter Lang, The Wythoff and the Zeckendorf representations of numbers are equivalent, in G. E. Bergum et al. (edts.) Application of Fibonacci numbers vol. 6, Kluwer, Dordrecht, 1996, pp. 319-337. [See A317208 for a link.]
G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
Michel Rigo, Formal Languages, Automata and Numeration Systems, 2 vols., Wiley, 2014. Mentions this sequence - see "List of Sequences" in Vol. 2.
LINKS
A. G. M. Ahmed, AA Weaving, in Proceedings of Bridges 2013: Mathematics, Music, Art, Architecture, Culture.
Jean-Paul Allouche, Julien Cassaigne, Jeffrey Shallit, and Luca Q. Zamboni, A Taxonomy of Morphic Sequences, arXiv preprint arXiv:1711.10807 [cs.FL], Nov 29 2017.
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
P. Arnoux and E. Harriss, What is a Rauzy Fractal?, Notices Amer. Math. Soc., 61 (No. 7, 2014), 768-770, also p. 704 and front cover.
Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
Galyna Barabash, Yaroslav Kholyavka, and Iryna Tytar, Periodic words connected with the Lucas numbers, Visnyk of the Lviv Univ. Series Mech. Math. (2017), Issue 84, 62-66.
Jean Berstel, Home Page
J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
Bryce Emerson Blackham, Subtraction Games: Range and Strict Periodicity, Master's thesis, 2018.
Cristian Cobeli and Alexandru Zaharescu, A bias parity question for Sturmian words, arXiv:1811.06509 [math.NT], 2018.
Fabien Durand, Julien Leroy, and Gwenaël Richomme, Do the Properties of an S-adic Representation Determine Factor Complexity?, Journal of Integer Sequences, Vol. 16 (2013), #13.2.6.
J. Endrullis, D. Hendriks and J. W. Klop, Degrees of streams.
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
L. Goldberg and A. V. Fraenkel, Patterns in the generalized Fibonacci word, applied to games, Discrete Math., 341 2018 1675-1687.
J. Grytczuk, Infinite semi-similar words, Discrete Math. 161 (1996), 133-141.
Andreas M. Hinz and Paul K. Stockmeyer, Discovering Fibonacci Numbers, Fibonacci Words, and a Fibonacci Fractal in the Tower of Hanoi, The Fibonacci Quarterly (2019) Vol. 57, No. 5, 72-83.
A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schroedinger operators, Commun. Math. Phys. 174 (1995), 149-159.
Tyler Hoffman and B. Steinhurst, Hausdorff Dimension of Generalized Fibonacci Word Fractals, arXiv preprint arXiv:1601.04786 [math.MG], 2016.
T. Karki, A. Lacroix, and M. Rigo, On the recognizability of self-generating sets, JIS 13 (2010) #10.2.2.
Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Eve Kivivuori, Implementing, analyzing, and benchmarking the Relative Lempel-Ziv compression algorithm, Master's Thesis, Univ. Helsinki (Finland 2023).
M. Lothaire, Algebraic Combinatorics on Words, Cambridge, 2002, see p. 41, etc.
Douglas M. McKenna, On a Better Golden Rectangle (That Is Not 61.8033...% Useless!), Proceedings of Bridges (2018), 187-194.
G. Melançon, Lyndon factorization of sturmian words, Discr. Math., 210 (2000), 137-149.
F. Mignosi, A. Restivo, and M. Sciortino, Words and forbidden factors, WORDS (Rouen, 1999). Theoret. Comput. Sci. 273 (2002), no. 1-2, 99--117. MR1872445 (2002m:68096) - From N. J. A. Sloane, Jul 10 2012
Kerry Mitchell, Spirolateral image for this sequence [taken, with permission, from the Spirolateral-Type Images from Integer Sequences article]
Giuseppe Pirillo, Fibonacci numbers and words, Discrete Math. 173 (1997), no. 1-3, 197--207. MR1468849 (98g:68135)
J. L. Ramírez and G. N. Rubiano, Properties and Generalizations of the Fibonacci Word Fractal, The Mathematica Journal, Vol. 16 (2014).
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
Aayush Rajasekaran, Using Automata Theory to Solve Problems in Additive Number Theory, MS thesis, University of Waterloo, 2018.
Aayush Rajasekaran, Narad Rampersad, and Jeffrey Shallit, Overpals, Underlaps, and Underpals, In: Brlek S., Dolce F., Reutenauer C., Vandomme É. (eds) Combinatorics on Words, WORDS 2017, Lecture Notes in Computer Science, vol 10432.
M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), #13.2.5.
Luke Schaeffer and Jeffrey Shallit, Closed, Palindromic, Rich, Privileged, Trapezoidal, and Balanced Words in Automatic Sequences, Electronic Journal of Combinatorics 23(1) (2016), #P1.25.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Eric Weisstein's World of Mathematics, Golden Ratio
Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), #P2.52.
FORMULA
a(n) = floor((n+2)*r) - floor((n+1)*r) where r=phi/(1+2*phi) and phi is the Golden Ratio. - Benoit Cloitre, Nov 10 2003
a(n) = A003714(n) mod 2 = A014417(n) mod 2. - Philippe Deléham, Jan 04 2004
The first formula by Cloitre is just one of an infinite family of formulas. Using phi^2=1+phi, it follows that r=phi/(1+2*phi)=2-phi. Then from floor(-x)=-floor(x)-1 for non-integer x, it follows that a(n)=2-A014675(n)=2-(floor((n+2)* phi)-floor((n+1)*phi)). - Michel Dekking, Aug 27 2016
a(n) = 1 - A096270(n+1), i.e., A096270 is the complement of this sequence. - A.H.M. Smeets, Mar 31 2024
EXAMPLE
The word is 010010100100101001010010010100...
Over the alphabet {a,b} this is a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, ...
MAPLE
z := proc(m) option remember; if m=0 then [0] elif m=1 then [0, 1] else [op(z(m-1)), op(z(m-2))]; fi; end; z(12);
M:=19; S[0]:=`0`; S[1]:=`01`; for n from 2 to M do S[n]:=cat(S[n-1], S[n-2]); od:
t0:=S[M]: l:=length(t0); for i from 1 to l do lprint(i-1, substring(t0, i..i)); od: # N. J. A. Sloane, Nov 01 2006
MATHEMATICA
Nest[ Flatten[ # /. {0 -> {0, 1}, 1 -> {0}}] &, {0}, 10] (* Robert G. Wilson v, Mar 05 2005 *)
Flatten[Nest[{#, #[[1]]} &, {0, 1}, 9]] (* IWABUCHI Yu(u)ki, Oct 23 2013 *)
Table[Floor[(n + 2) #] - Floor[(n + 1) #], {n, 0, 120}] &[2 - GoldenRatio] (* Michael De Vlieger, Aug 15 2016 *)
SubstitutionSystem[{0->{0, 1}, 1->{0}}, {0}, {10}][[1]] (* Harvey P. Dale, Dec 20 2021 *)
PROG
(Magma) t1:=[ n le 2 select ["0", "0, 1"][n] else Self(n-1) cat ", " cat Self(n-2) : n in [1..12]]; t1[12];
(Haskell)
a003849 n = a003849_list !! n
a003849_list = tail $ concat fws where
fws = [1] : [0] : (zipWith (++) fws $ tail fws)
-- Reinhard Zumkeller, Nov 01 2013, Apr 07 2012
(PARI) a(n)=my(k=2); while(fibonacci(k)<=n, k++); while(n>1, while(fibonacci(k--)>n, ); n-=fibonacci(k)); n==1 \\ Charles R Greathouse IV, Feb 03 2014
(PARI) M3849=[2, 2, 1, 0]/*L(k), S(k), L(k-1), S(k-1)*/; A003849(n)={while(n>M3849[1], M3849=vecextract(M3849, [1, 2, 1, 2])+[M3849[3], M3849[4]<<M3849[1], 0, 0]); bittest(M3849[2], n)} \\ Much faster at the expense of using ~ Nmax/5 bytes of memory (~ 250 KB for n <= 1.3e6). - M. F. Hasler, Apr 07 2021
(Python)
def fib(n):
"""Return the concatenation of A003849(0..F-1) where F is the smallest
Fibonacci number > n, so that the result contains a(n) at index n."""
a, b = '10'
while len(b)<=n:
a, b = b, b + a
return b # Robert FERREOL, Apr 15 2016, edited by M. F. Hasler, Apr 07 2021
(Python)
from math import isqrt
def A003849(n): return 2-(n+2+isqrt(m:=5*(n+2)**2)>>1)+(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 25 2022
CROSSREFS
There are several versions of this sequence in the OEIS. This one and A003842 are probably the most important. See also A008352, A076662, A288581, A288582.
Positions of 1's gives A003622.
Sequences mentioned in the Allouche et al. "Taxonomy" paper, listed by example number: 1: A003849, 2: A010060, 3: A010056, 4: A020985 and A020987, 5: A191818, 6: A316340 and A273129, 18: A316341, 19: A030302, 20: A063438, 21: A316342, 22: A316343, 23: A003849 minus its first term, 24: A316344, 25: A316345 and A316824, 26: A020985 and A020987, 27: A316825, 28: A159689, 29: A049320, 30: A003849, 31: A316826, 32: A316827, 33: A316828, 34: A316344, 35: A043529, 36: A316829, 37: A010060.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Revised by N. J. A. Sloane, Jul 03 2012
STATUS
approved
A003622 The Wythoff compound sequence AA: a(n) = floor(n*phi^2) - 1, where phi = (1+sqrt(5))/2.
(Formerly M3278)
+10
84
1, 4, 6, 9, 12, 14, 17, 19, 22, 25, 27, 30, 33, 35, 38, 40, 43, 46, 48, 51, 53, 56, 59, 61, 64, 67, 69, 72, 74, 77, 80, 82, 85, 88, 90, 93, 95, 98, 101, 103, 106, 108, 111, 114, 116, 119, 122, 124, 127, 129, 132, 135, 137, 140, 142, 145, 148, 150, 153, 156, 158, 161, 163, 166 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Also, integers with "odd" Zeckendorf expansions (end with ...+F_2 = ...+1) (Fibonacci-odd numbers); first column of Wythoff array A035513; from a 3-way splitting of positive integers. [Edited by Peter Munn, Sep 16 2022]
Also, numbers k such that A005206(k) = A005206(k+1). Also k such that A022342(A005206(k)) = k+1 (for all other k's this is k). - Michele Dondi (bik.mido(AT)tiscalenet.it), Dec 30 2001
Also, positions of 1's in A139764, the smallest term in Zeckendorf representation of n. - John W. Layman, Aug 25 2011
From Amiram Eldar, Sep 03 2022: (Start)
Numbers with an odd number of trailing 1's in their dual Zeckendorf representation (A104326), i.e., numbers k such that A356749(k) is odd.
The asymptotic density of this sequence is 1 - 1/phi (A132338). (End)
REFERENCES
A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 62.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 1990, p. 307-308 of 2nd edition.
C. Kimberling, "Stolarsky interspersions", Ars Combinatoria 39 (1995) 129-138.
D. R. Morrison, "A Stolarsky array of Wythoff pairs", in A Collection of Manuscripts Related to the Fibonacci Sequence. Fibonacci Assoc., Santa Clara, CA, 1980, pp. 134-136.
J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 10.
N. J. A. Sloane and Simon Plouffe, Encyclopedia of Integer Sequences, Academic Press, 1995: this sequence appears twice, as both M3277 and M3278.
LINKS
A.H.M. Smeets, Table of n, a(n) for n = 1..20000 (terms 1.1000 from T. D. Noe)
J.-P. Allouche and F. M. Dekking, Generalized Beatty sequences and complementary triples, arXiv:1809.03424 [math.NT], 2018.
A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 62.
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, February 2012. - N. J. A. Sloane, Jun 10 2012
Aviezri S. Fraenkel, The Raleigh game, INTEGERS: Electronic Journal of Combinatorial Number Theory 7.2 (2007): A13, 10 pages. See Table 1.
Martin Griffiths, On a Matrix Arising from a Family of Iterated Self-Compositions, Journal of Integer Sequences, 18 (2015), Article 15.11.8.
Clark Kimberling, Interspersions.
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS 11 (2008), Article 08.3.3.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Clark Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
L. Lindroos, A. Sills, and H. Wang, Odd fibbinary numbers and the golden ratio, Fib. Q., 52 (2014), 61-65.
A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See page 3.
M. Rigo, P. Salimov, and E. Vandomme, Some Properties of Abelian Return Words, Journal of Integer Sequences, Vol. 16 (2013), Article 13.2.5.
N. J. A. Sloane, Classic Sequences
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
Jiemeng Zhang, Zhixiong Wen, and Wen Wu, Some Properties of the Fibonacci Sequence on an Infinite Alphabet, Electronic Journal of Combinatorics, 24(2) (2017), Article P2.52.
FORMULA
a(n) = floor(n*phi) + n - 1. [Corrected by Jianing Song, Aug 18 2022]
a(n) = floor(floor(n*phi)*phi) = A000201(A000201(n)). [See the Mathematics Stack Exchange link for a proof of the equivalence of the definition. - Jianing Song, Aug 18 2022]
a(n) = 1 + A022342(1 + A022342(n)).
G.f.: 1 - (1-x)*Sum_{n>=1} x^a(n) = 1/1 + x/1 + x^2/1 + x^3/1 + x^5/1 + x^8/1 + ... + x^F(n)/1 + ... (continued fraction where F(n)=n-th Fibonacci number). - Paul D. Hanna, Aug 16 2002
a(n) = A001950(n) - 1. - Philippe Deléham, Apr 30 2004
a(n) = A022342(n) + n. - Philippe Deléham, May 03 2004
a(n) = a(n-1) + 2 + A005614(n-2); also a(n) = a(n-1) + 1 + A001468(n-1). - A.H.M. Smeets, Apr 26 2024
MAPLE
A003622 := proc(n)
n+floor(n*(1+sqrt(5))/2)-1 ;
end proc: # R. J. Mathar, Jan 25 2015
# Maple code for the Wythoff compound sequences, from N. J. A. Sloane, Mar 30 2016
# The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
# Assume files out1, out2 contain lists of the terms in the base sequences A and B from their b-files
read out1; read out2; b[0]:=b1: b[1]:=b2:
w2:=(i, j, n)->b[i][b[j][n]];
w3:=(i, j, k, n)->b[i][b[j][b[k][n]]];
for i from 0 to 1 do
lprint("name=", i);
lprint([seq(b[i][n], n=1..100)]):
od:
for i from 0 to 1 do for j from 0 to 1 do
lprint("name=", i, j);
lprint([seq(w2(i, j, n), n=1..100)]);
od: od:
for i from 0 to 1 do for j from 0 to 1 do for k from 0 to 1 do
lprint("name=", i, j, k);
lprint([seq(w3(i, j, k, n), n=1..100)]);
od: od: od:
MATHEMATICA
With[{c=GoldenRatio^2}, Table[Floor[n c]-1, {n, 70}]] (* Harvey P. Dale, Jun 11 2011 *)
Range[70]//Floor[#*GoldenRatio^2]-1& (* Waldemar Puszkarz, Oct 10 2017 *)
PROG
(PARI) a(n)=floor(n*(sqrt(5)+3)/2)-1
(PARI) a(n) = (sqrtint(n^2*5)+n*3)\2 - 1; \\ Michel Marcus, Sep 17 2022
(Haskell)
a003622 n = a003622_list !! (n-1)
a003622_list = filter ((elem 1) . a035516_row) [1..]
-- Reinhard Zumkeller, Mar 10 2013
(Python)
from sympy import floor
from mpmath import phi
def a(n): return floor(n*phi**2) - 1 # Indranil Ghosh, Jun 09 2017
(Python)
from math import isqrt
def A003622(n): return (n+isqrt(5*n**2)>>1)+n-1 # Chai Wah Wu, Aug 11 2022
CROSSREFS
Positions of 1's in A003849.
Complement of A022342.
The Wythoff compound sequences: Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A005614 The binary complement of the infinite Fibonacci word A003849. Start with 1, apply 0->1, 1->10, iterate, take limit. +10
83
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Previous name was: The infinite Fibonacci word (start with 1, apply 0->1, 1->10, iterate, take limit).
Characteristic function of A022342. - Philippe Deléham, May 03 2004
a(n) = number of 0's between successive 1's (see also A003589 and A007538). - Eric Angelini, Jul 06 2005
With offset 1 this is the characteristic sequence for Wythoff A-numbers A000201=[1,3,4,6,...].
Eric Angelini's comment made me think that if 1 is defined to be the number of 0's between successive 1's in a string of 0's and 1's, then this string is 101. Applying the same operation to the digits of 101 leads to 101101, the iteration leads to successive palindromes of lengths given by A001911, up to a(n). - Rémi Schulz, Jul 06 2010
For generalized Fibonacci words see A221150, A221151, A221152, ... - Peter Bala, Nov 11 2013
The limiting mean of the first n terms is phi - 1; the limiting variance is phi (A001622). - Clark Kimberling, Mar 12 2014
Apply the difference operator to every column of the Wythoff difference array, A080164, to get an array of Fibonacci numbers, F(h). Replace each F(h) with h, and apply the difference operator to every column. In the resulting array, every column is A005614. - Clark Kimberling, Mar 02 2015
Binary expansion of the rabbit constant A014565. - M. F. Hasler, Nov 10 2018
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
LINKS
T. D. Noe, Table of n, a(n) for n = 0..10945 (19 iterations)
Ricardo Gómez Aíza, Symbolic dynamical scales: modes, orbitals, and transversals, arXiv:2009.02669 [math.DS], 2020.
F. Axel et al., Vibrational modes in a one dimensional "quasi-alloy": the Morse case, J. de Physique, Colloq. C3, Supp. to No. 7, Vol. 47 (Jul 1986), pp. C3-181-C3-186; see Eq. (10).
E. A. Bender and J. T. Butler, Asymptotic approximations for the number of fanout-free functions, IEEE Trans. Computers, 27 (1978), 1180-1183. (Annotated scanned copy)
M. Bunder and K. Tognetti, On the self matching properties of [j tau], Discrete Math., 241 (2001), 139-151.
Glen Joyce C. Dulatre, Jamilah V. Alarcon, Vhenedict M. Florida, and Daisy Ann A. Disu, On Fractal Sequences, DMMMSU-CAS Science Monitor (2016-2017) Vol. 15 No. 2, 109-113.
S. Dulucq and D. Gouyou-Beauchamps, Sur les facteurs des suites de Sturm, Theoret. Comput. Sci. 71 (1990), 381-400.
M. S. El Naschie, Statistical geometry of a Cantor discretum and semiconductors, Computers & Mathematics with Applications, Vol. 29 (Issue 12, June 1995), 103-110.
D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43.
D. Gault and M. Clint, "Curiouser and curiouser said Alice. Further reflections on an interesting recursive function, Intern. J. Computer. Math., 26 (1988), 35-43. (Annotated scanned copy)
J. Grytczuk, Infinite semi-similar words, Discrete Math. 161 (1996), 133-141.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
Clark Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
K. L. Kodandapani and S. C. Seth, On combinational networks with restricted fan-out, IEEE Trans. Computers, 27 (1978), 309-318. (Annotated scanned copy)
Wolfdieter Lang, The Tribonacci and ABC Representations of Numbers are Equivalent, arXiv preprint arXiv:1810.09787 [math.NT], 2018.
G. Melançon, Lyndon factorization of sturmian words, Discr. Math., 210 (2000), 137-149.
S. Mneimneh, Fibonacci in The Curriculum: Not Just a Bad Recurrence, in Proceeding SIGCSE '15 Proceedings of the 46th ACM Technical Symposium on Computer Science Education, 253-258.
C. Mongoven, The Rabbit Sequence (a musical composition with A005614).
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012-2014.
Jeffrey Shallit, Characteristic words as fixed points of homomorphisms, University of Waterloo Technical Report CS-91-72, 1991.
Jeffrey Shallit, Characteristic words as fixed points of homomorphisms. [Cached copy, with permission]
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
K. B. Stolarsky, Beatty sequences, continued fractions and certain shift operators, Canad. Math. Bull., 19 (1976), 473-482.
Scott V. Tezlaf, On ordinal dynamics and the multiplicity of transfinite cardinality, arXiv:1806.00331 [math.NT], 2018. See p. 10.
Eric Weisstein's World of Mathematics, Rabbit Constant and Rabbit Sequence.
FORMULA
Define strings S(0)=1, S(1)=10, thereafter S(n)=S(n-1)S(n-2); iterate. Sequence is S(oo). The individual S(n)'s are given in A036299.
a(n) = floor((n+2)*u) - floor((n+1)*u), where u = (-1 + sqrt(5))/2.
Sum_{n>=0} a(n)/2^(n+1) = A014565. - R. J. Mathar, Jul 19 2013
From Peter Bala, Nov 11 2013: (Start)
If we read the present sequence as the digits of a decimal constant c = 0.101101011011010 ... then we have the series representation c = Sum_{n >= 1} 1/10^floor(n*phi). An alternative representation is c = Sum_{n >= 1} 1/10^floor(n/phi) - 10/9.
The constant 9*c has the simple continued fraction representation [0; 1, 10, 10, 100, 1000, ..., 10^Fibonacci(n), ...]. See A010100.
Using this result we can find the alternating series representation c = 1/9 - 9*Sum_{n >= 1} (-1)^(n+1)*(1 + 10^Fibonacci(3*n+1))/( (10^(Fibonacci(3*n - 1)) - 1)*(10^(Fibonacci(3*n + 2)) - 1) ). The series converges very rapidly: for example, the first 10 terms of the series give a value for c accurate to more than 5.7 million decimal places. Cf. A014565. (End)
a(n) = A005206(n+1) - A005206(n). a(2*n) = A339052(n); a(2*n+1) = A339051(n+1). - Peter Bala, Aug 09 2022
EXAMPLE
The infinite word is 101101011011010110101101101011...
MAPLE
Digits := 50; u := evalf((1-sqrt(5))/2); A005614 := n->floor((n+1)*u)-floor(n*u);
MATHEMATICA
Nest[ Flatten[ # /. {0 -> {1}, 1 -> {1, 0}}] &, {1}, 10] (* Robert G. Wilson v, Jan 30 2005 *)
Flatten[Nest[{#, #[[1]]} &, {1, 0}, 9]] (* IWABUCHI Yu(u)ki, Oct 23 2013 *)
SubstitutionSystem[{0 -> {1}, 1 -> {1, 0}}, {1, 0}, 9] // Last (* Jean-François Alcover, Feb 06 2020 *)
PROG
(PARI) a(n, w1, s0, s1)=local(w2); for(i=2, n, w2=[ ]; for(k=1, length(w1), w2=concat(w2, if(w1[ k ], s1, s0))); w1=w2); w2
for(n=2, 10, print(n" "a(n, [ 0 ], [ 1 ], [ 1, 0 ]))) \\ Gives successive convergents to sequence
(PARI) /* for m>=1 compute exactly A183136(m+1)+1 terms of the sequence */
r=(1+sqrt(5))/2; v=[1, 0]; for(n=2, m, v=concat(v, vector(floor((n+1)/r), i, v[i])); a(n)=v[n]; ) /* Benoit Cloitre, Jan 16 2013 */
(Haskell)
a005614 n = a005614_list !! n
a005614_list = map (1 -) a003849_list
-- Reinhard Zumkeller, Apr 07 2012
(Magma) [Floor((n+1)*(-1+Sqrt(5))/2)-Floor(n*(-1+Sqrt(5))/2): n in [1..100]]; // Vincenzo Librandi, Jan 17 2019
(Python)
from math import isqrt
def A005614(n): return (n+isqrt(m:=5*(n+2)**2)>>1)-(n+1+isqrt(m-10*n-15)>>1) # Chai Wah Wu, Aug 17 2022
CROSSREFS
Binary complement of A003849, which is the standard form of this sequence.
Two other essentially identical sequences are A096270, A114986.
Subwords: A178992, A171676.
Cf. A000045 (Fibonacci numbers), A001468, A001911, A005206 (partial sums), A014565, A014675, A022342, A036299, A044432, A221150, A221151, A221152.
Cf. A339051 (odd bisection), A339052 (even bisection).
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Corrected by Clark Kimberling, Oct 04 2000
Name corrected by Michel Dekking, Apr 02 2019
STATUS
approved
A005206 Hofstadter G-sequence: a(0) = 0; a(n) = n - a(a(n-1)) for n > 0.
(Formerly M0436)
+10
82
0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 13, 14, 14, 15, 16, 16, 17, 17, 18, 19, 19, 20, 21, 21, 22, 22, 23, 24, 24, 25, 25, 26, 27, 27, 28, 29, 29, 30, 30, 31, 32, 32, 33, 33, 34, 35, 35, 36, 37, 37, 38, 38, 39, 40, 40, 41, 42, 42, 43, 43, 44, 45, 45, 46, 46, 47 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Rule for finding n-th term: a(n) = An, where An denotes the Fibonacci antecedent to (or right shift of) n, which is found by replacing each F(i) in the Zeckendorf expansion (obtained by repeatedly subtracting the largest Fibonacci number you can until nothing remains) by F(i-1) (A1=1). For example: 58 = 55 + 3, so a(58) = 34 + 2 = 36. - Diego Torres (torresvillarroel(AT)hotmail.com), Nov 24 2002
From Albert Neumueller (albert.neu(AT)gmail.com), Sep 28 2006: (Start)
A recursively built tree structure can be obtained from the sequence (see Hofstadter, p. 137):
14 15 16 17 18 19 20 21
\ / / \ / \ / /
9 10 11 12 13
\ / / \ /
6 7 8
\ / /
\ / /
\ / /
4 5
\ /
\ /
\ /
\ /
\ /
3
/
2
\ /
1
To construct the tree: node n is connected with the node a(n) below
n
/
a(n)
For example, since a(7) = 4:
7
/
4
If the nodes of the tree are read from bottom to top, left to right, one obtains the positive integers: 1, 2, 3, 4, 5, 6, ... The tree has a recursive structure, since the construct
/
x
\ /
x
can be repeatedly added on top of its own ends, to construct the tree from its root: e.g.,
/
x
/ \ /
x x
\ / /
x x
\ /
\ /
x
When moving from a node to a lower connected node, one is moving to the parent. Parent node of n: floor((n+1)/tau). Left child of n: floor(tau*n). Right child of n: floor(tau*(n+1))-1 where tau=(1+sqrt(5))/2. (See the Sillke link.)
(End)
The number n appears A001468(n) times; A001468(n) = floor((n+1)*Phi) - floor(n*Phi) with Phi = (1 + sqrt 5)/2. - Philippe Deléham, Sep 22 2005
Number of positive Wythoff A-numbers A000201 not exceeding n. - N. J. A. Sloane, Oct 09 2006
Number of positive Wythoff B-numbers < A000201(n+1). - N. J. A. Sloane, Oct 09 2006
From Bernard Schott, Apr 23 2022: (Start)
Properties coming from the 1st problem proposed during the 45th Czech and Slovak Mathematical Olympiad in 1996 (see IMO Compendium link):
-> a(n) >= a(n-1) for any positive integer n,
-> a(n) - a(n-1) belongs to {0,1},
-> No integer n exists such that a(n-1) = a(n) = a(n+1). (End)
For n >= 1, find n in the Wythoff array (A035513). a(n) is the number that precedes n in its row, using the preceding column of the extended Wythoff array (A287870) if n is at the start of the (unextended) row. - Peter Munn, Sep 17 2022
See my 2023 publication on Hofstadter's G-sequence for a proof of the equality of (a(n)) with the sequence A073869. - Michel Dekking, Apr 28 2024
REFERENCES
D. R. Hofstadter, Goedel, Escher, Bach: an Eternal Golden Braid, Random House, 1980, p. 137.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
N. J. A. Sloane and T. D. Noe, Table of n, a(n) for n = 0..20000 (the first 1000 terms were found by T. D. Noe)
L. Carlitz, Fibonacci Representations, Fibonacci Quarterly, volume 6, number 4, October 1968, pages 193-220. a(n) = e(n) at equation 1.10 or 2.11 and see equation 3.8 recurrence.
M. Celaya and F. Ruskey, Morphic Words and Nested Recurrence Relations, arXiv preprint arXiv:1307.0153 [math.CO], 2013.
M. Celaya and F. Ruskey, Another Property of Only the Golden Ratio, American Mathematical Monthly, Problem 11651, solutions volume 121, number 6, June-July 2014, pages 549-556.
F. Michel Dekking, Morphisms, Symbolic Sequences, and Their Standard Forms, Journal of Integer Sequences, Vol. 19 (2016), Article 16.1.1.
F. M. Dekking, On Hofstadter's G-sequence, Journal of Integer Sequences 26 (2023), Article 23.9.2, 1-11.
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18.
D. Gault and M. Clint, "Curiouser and curiouser" said Alice. Further reflections on an interesting recursive function, Internat. J. Computer Math., 26 (1988), 35-43. Also annotated scanned copy.
Martin Griffiths, A formula for an infinite family of Fibonacci-word sequences, Fib. Q., 56 (2018), 75-80.
H. W. Gould, J. B. Kim and V. E. Hoggatt, Jr., Sequences associated with t-ary coding of Fibonacci's rabbits, Fib. Quart., 15 (1977), 311-318.
Vincent Granville and Jean-Paul Rasson, A strange recursive relation, J. Number Theory 30 (1988), no. 2, 238--241. MR0961919(89j:11014).
J. Grytczuk, Another variation on Conway's recursive sequence, Discr. Math. 282 (2004), 149-161.
D. R. Hofstadter, Eta-Lore [Cached copy, with permission]
D. R. Hofstadter, Pi-Mu Sequences [Cached copy, with permission]
D. R. Hofstadter and N. J. A. Sloane, Correspondence, 1977 and 1991
The IMO Compendium, Problem 1, 45th Czech and Slovak Mathematical Olympiad 1996.
Clark Kimberling and K. B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123 (No. 2, 2016), 267-273.
P. Letouzey, Hofstadter's problem for curious readers, Technical Report, 2015.
Mustazee Rahman, A Combinatorial interpretation of Hofstadter's G-sequence, arXiv:1105.1718 [math.CO], 2011-2013.
B. Schoenmakers, A tight lower bound for top-down skew heaps, Information Processing Letters, 61(5): 279-284, 14 March 1997.
Torsten Sillke, Floor Recurrences
Th. Stoll, On Hofstadter's married functions, Fib. Q., 46/47 (2008/2009), 62-67. - N. J. A. Sloane, May 30 2009
Eric Weisstein's World of Mathematics, Hofstadter G-Sequence
FORMULA
a(n) = floor((n+1)*tau) - n - 1 = A000201(n+1)-n-1, where tau = (1+sqrt(5))/2; or a(n) = floor(sigma*(n+1)) where sigma = (sqrt(5)-1)/2.
a(0)=0, a(1)=1, a(n) = n - a(floor(n/tau)). - Benoit Cloitre, Nov 27 2002
a(n) = A019446(n) - 1. - Reinhard Zumkeller, Feb 02 2012
a(n) = n - A060144(n+1). - Reinhard Zumkeller, Apr 07 2012
a(n) = Sum_{k=1..A072649(m)} A000045(m)*A213676(m,k): m=A000201(n+1). - Reinhard Zumkeller, Mar 10 2013
a(n + a(n)) = n. - Pierre Letouzey, Sep 09 2015
a(n) + a(a(n+1) - 1) = n. - Pierre Letouzey, Sep 09 2015
a(0) = 0, a(n+1) = a(n) + d(n) and d(0) = 1, d(n+1)=1-d(n)*d(a(n)). - Pierre Letouzey, Sep 09 2015
a(n) = A293688(n)/(n+1) for n >= 0 (conjectured). - Enrique Navarrete, Oct 15 2017
A generalization of Diego Torres's 2002 comment as a formula: if n = Sum_{i in S} A000045(i+1), where S is a set of positive integers, then a(n) = Sum_{i in S} A000045(i). - Peter Munn, Sep 28 2022
Conjectures from Chunqing Liu, Aug 01 2023: (Start)
a(A000201(n)-1) = n-1.
a(A001950(n)-1) = a(A001950(n)) = A000201(n). (End)
MAPLE
H:=proc(n) option remember; if n=0 then 0 elif n=1 then 1 else n-H(H(n-1)); fi; end proc: seq(H(n), n=0..76);
MATHEMATICA
a[0] = 0; a[n_] := a[n] = n - a[a[n - 1]]; Array[a, 77, 0]
(* Second program: *)
Fold[Append[#1, #2 - #1[[#1[[#2]] + 1 ]] ] &, {0}, Range@ 76] (* Michael De Vlieger, Nov 13 2017 *)
PROG
(Haskell)
a005206 n = a005206_list !! n
a005206_list = 0 : zipWith (-) [1..] (map a005206 a005206_list)
-- Reinhard Zumkeller, Feb 02 2012, Aug 07 2011
(Haskell)
a005206 = sum . zipWith (*) a000045_list . a213676_row . a000201 . (+ 1)
-- Reinhard Zumkeller, Mar 10 2013
(PARI) first(n)=my(v=vector(n)); v[1]=1; for(k=2, n, v[k]=k-v[v[k-1]]); concat(0, v) \\ Charles R Greathouse IV, Sep 02 2015
(Magma) [Floor((n+1)*(1+Sqrt(5))/2)-n-1: n in [0..80]]; // Vincenzo Librandi, Nov 19 2016
(Python)
from math import isqrt
def A005206(n): return (n+1+isqrt(5*(n+1)**2)>>1)-n-1 # Chai Wah Wu, Aug 09 2022
CROSSREFS
Apart from initial terms, same as A060143. Cf. A123070.
a(n):=Sum{k=1..n} h(k), n >= 1, with h(k):= A005614(k-1) and a(0):=0.
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
a(0) = 0 added in the Name by Bernard Schott, Apr 23 2022
STATUS
approved
A003842 The infinite Fibonacci word: start with 1, repeatedly apply the morphism 1->12, 2->1, take limit; or, start with S(0)=2, S(1)=1, and for n>1 define S(n)=S(n-1)S(n-2), then the sequence is S(oo). +10
52
1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Or, fixed point of the morphism 1->12, 2->1, starting from a(1) = 2.
A Sturmian word, as are all versions of this sequence. This means that if one slides a window of length n along the sequence, one sees exactly n+1 different subwords (see A213975). For a proof, see for example Chap. 2 of Lothaire (2002).
The limiting mean of the first n terms is 3 - phi, where phi is the golden ratio (A001622); the limiting variance is 2 - phi. - Clark Kimberling, Mar 12 2014
The Wikipedia article on L-system Example 1 is "Algae" given by the axiom: A and rules: A -> AB, B -> A. The sequence G(n) = G(n-1)G(n-2) yields this sequence when A -> 1, B -> 2. - Michael Somos, Jan 12 2015
In the limit #1's : #2's = phi : 1. - Frank M Jackson, Mar 12 2018
REFERENCES
J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003.
Jean Berstel, "Fibonacci words—a survey." In The book of L, pp. 13-27. Springer Berlin Heidelberg, 1986.
J. Berstel and J. Karhumaki, Combinatorics on words - a tutorial, Bull. EATCS, #79 (2003), pp. 178-228.
E. Bombieri and J. Taylor, Which distribution of matter diffracts? An initial investigation, in International Workshop on Aperiodic Crystals (Les Houches, 1986), J. de Physique, Colloq. C3, 47 (1986), C3-19 to C3-28.
Aldo de Luca and Stefano Varricchio, Finiteness and regularity in semigroups and formal languages. Monographs in Theoretical Computer Science. An EATCS Series. Springer-Verlag, Berlin, 1999. x+240 pp. ISBN: 3-540-63771-0 MR1696498 (2000g:68001). See p. 25.
J. C. Lagarias, Number Theory and Dynamical Systems, pp. 35-72 of S. A. Burr, ed., The Unreasonable Effectiveness of Number Theory, Proc. Sympos. Appl. Math., 46 (1992). Amer. Math. Soc. - see p. 64.
G. Melançon, Factorizing infinite words using Maple, MapleTech journal, vol. 4, no. 1, 1997, pp. 34-42, esp. p. 36.
LINKS
T. D. Noe, Table of n, a(n) for n=0..10945 (20 iterations)
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11.
J.-P. Allouche and M. Mendes France, Automata and Automatic Sequences, in: Axel F. and Gratias D. (eds), Beyond Quasicrystals. Centre de Physique des Houches, vol 3. Springer, Berlin, Heidelberg, pp. 293-367, 1995; DOI https://doi.org/10.1007/978-3-662-03130-8_11. [Local copy]
Scott Balchin and Dan Rust, Computations for Symbolic Substitutions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.4.1.
Jean Berstel, Home Page
Julien Cassaigne, On extremal properties of the Fibonacci word, RAIRO-Theor. Inf. Appl. 42 (2008) 701-715.
J. Endrullis, D. Hendriks and J. W. Klop, Degrees of streams.
S. Ferenczi, Complexity of sequences and dynamical systems, Discrete Math., 206 (1999), 145-154.
J. Grytczuk, Infinite semi-similar words, Discrete Math. 161 (1996), 133-141.
A. Hof, O. Knill and B. Simon, Singular continuous spectrum for palindromic Schrödinger operators, Commun. Math. Phys. 174 (1995), 149-159.
Clark Kimberling, A Self-Generating Set and the Golden Mean, J. Integer Sequences, 3 (2000), #00.2.8.
Clark Kimberling, Intriguing infinite words composed of zeros and ones, Elemente der Mathematik (2021).
M. Lothaire, Algebraic Combinatorics on Words, Cambridge, 2002, see p. 41, etc.
G. Melançon, Lyndon factorization of sturmian words, Discr. Math., 210 (2000), 137-149.
F. Mignosi, A. Restivo and M. Sciortino, Words and forbidden factors, WORDS (Rouen, 1999). Theoret. Comput. Sci. 273 (2002), no. 1-2, 99--117. MR1872445 (2002m:68096) - From N. J. A. Sloane, Jul 10 2012
F. Mignosi and L. Q. Zamboni, On the number of Arnoux-Rauzy words, Acta arith., 101 (2002), no. 2, 121-129.
Giuseppe Pirillo, Fibonacci numbers and words, Discrete Math. 173 (1997), no. 1-3, 197--207. MR1468849 (98g:68135).
Patrice Séébold, Look and Say Fibonacci, RAIRO-Theor. Inf. Appl. 42 (2008) 729-746.
N. J. A. Sloane, Families of Essentially Identical Sequences, Mar 24 2021 (Includes this sequence)
P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31.
Eric Weisstein's World of Mathematics, Golden Ratio
Wikipedia, L-system Example 1: Algae
FORMULA
Define strings S(0)=2, S(1)=1, S(n)=S(n-1)S(n-2); iterate. Sequence is S(infinity).
a(n) = n + 2 - A120613(n+1). - Benoit Cloitre, Jul 28 2005 [Corrected by N. J. A. Sloane, Jun 30 2018]
EXAMPLE
Over the alphabet {a,b} this is the sequence a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, a, b, a, b, a, a, b, a, a, b, a, b, a, ...
MATHEMATICA
Nest[ Flatten[ # /. {1 -> {1, 2}, 2 -> {1}}] &, {1}, 10] (* Robert G. Wilson v, Mar 04 2005 *)
Table[n + 1 - Floor[((1 + Sqrt[5])/2)*Floor[2*(n + 1)/(1 + Sqrt[5])]], {n, 1, 50}] (* G. C. Greubel, May 18 2017 *)
SubstitutionSystem[{1->{1, 2}, 2->{1}}, {1}, {10}][[1]] (* Harvey P. Dale, Nov 19 2022 *)
PROG
(Haskell)
a003842 n = a003842_list !! n
a003842_list = tail $ concat fws where
fws = [2] : [1] : (zipWith (++) fws $ tail fws)
-- Reinhard Zumkeller, Oct 26 2013
(PARI) for(n=1, 50, print1(n+1 - floor(((1+sqrt(5))/2)*floor(2*(n+1)/(1+sqrt(5)))), ", ")) \\ G. C. Greubel, May 18 2017
(Python) def A003842(length):
a = [1]
while len(a)<length: a = [j for i in a for j in [[], [1, 2], [1]][i]]
return a[:length] # Nicholas Stefan Georgescu, Jun 14 2022
(Python)
def aupto(nn):
S, Fnm2, Fnm1 = [1, 2], 1, 2
while len(S) < nn+1:
S += S[:min(Fnm2, nn+1-len(S))]
Fnm2, Fnm1 = Fnm1, Fnm1+Fnm2
return S
print(aupto(104)) # Michael S. Branicky, Jun 06 2022
(Python)
from math import isqrt
def A003842(n): return n+2-((m:=(n+2+isqrt(5*(n+2)**2)>>1)-n-2)+isqrt(5*m**2)>>1) # Chai Wah Wu, Aug 26 2022
CROSSREFS
A003849 is another common version of this sequence.
The following sequences are all essentially the same, in the sense that they are simple transformations of each other, with A000201 as the parent: A000201, A001030, A001468, A001950, A003622, A003842, A003849, A004641, A005614, A014675, A022342, A088462, A096270, A114986, A124841. - N. J. A. Sloane, Mar 11 2021
KEYWORD
nonn,nice,easy
AUTHOR
EXTENSIONS
Entry revised by N. J. A. Sloane, Jul 03 2012
STATUS
approved
page 1 2 3

Search completed in 0.037 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 23 15:29 EDT 2024. Contains 374552 sequences. (Running on oeis4.)