Na física relativística, o tensor eletromagnético tensão–energia é a contribuição para o tensor tensão–energia devido ao campo eletromagnético.[1] O tensor tensão–energia descreve o fluxo de energia e momento no espaço-tempo. O tensor eletromagnético de tensão–energia contém o negativo do tensor de tensão de Maxwell clássico que governa as interações eletromagnéticas.
No espaço livre e no espaço-tempo plano, o tensor eletromagnético tensão–energia em unidades do S.I. é:<refname="WheelerEtAl"/>
onde é o tensor eletromagnético e onde é o tensor métrico de Minkowski [en] de assinatura métrica (− + + +). Ao usar a métrica com assinatura (+ − − −), a expressão à direita do sinal de igual terá sinal oposto.
Explicitamente em forma de matriz:
onde
é o vetor de Poynting,
é o tensor de tensão de Maxwell e c é a velocidade da luz. Assim, é expresso e medido em unidades de pressão do S.I. (pascal).
A permissividade do espaço livre e a permeabilidade do espaço livre em unidades gaussianas c.g.s. são:
então:
e na forma de matriz explícita:
onde o vetor de Poynting se torna:
O tensor tensão-energia para um campo eletromagnético em um meio dielétrico é menos bem compreendido e é o assunto da controvérsia não resolvida de Abraham – Minkowski.[2]
O elemento do tensor tensão-energia representa o fluxo do μ-ésimo componente do quadrimomento do campo eletromagnético, , passando por um hiperplano ( é constante ). Representa a contribuição do eletromagnetismo para a fonte do campo gravitacional (curvatura do espaço-tempo) na relatividade geral.
O tensor eletromagnético tensão-energia tem várias propriedades algébricas:
- É um tensor simétrico:
- O tensor não tem traços:
Prova
Usando a forma explícita do tensor,
Baixando os índices e usando o fato de que
Então, usando
,
Observe que no primeiro termo, μ e α e apenas índices fictícios, então os renomeamos como α e β, respectivamente.
A simetria do tensor é como para um tensor tensão–energia geral na relatividade geral. O traço do tensor energia–momento é um escalar de Lorentz; o campo eletromagnético (e em particular as ondas eletromagnéticas) não tem escala de energia invariante de Lorentz, então seu tensor de energia-momento deve ter um traço de fuga. Essa ausência de traços eventualmente se relaciona com a falta de massa do fóton.[3]
O tensor eletromagnético tensão–energia permite uma maneira compacta de escrever as leis de conservação de energia e de momento linear no eletromagnetismo. A divergência do tensor tensão–energia é:
onde é a força de Lorentz (4D) por unidade de volume na matéria.
Esta equação é equivalente às seguintes leis de conservação 3D
descrevendo respectivamente o fluxo de densidade de energia eletromagnética
e densidade de momento eletromagnético
onde J é a densidade de corrente elétrica, ρ a densidade de carga elétrica e é a densidade de força de Lorentz.
- ↑ Gravitation (em inglês), J.A. Wheeler, C. Misner, K.S. Thorne, W.H. Freeman & Co, 1973, ISBN 0-7167-0344-0
- ↑ No entanto, veja Pfeifer et al., Review of modern physics (em inglês) 79, página 1197 (2007)
- ↑ Garg, Anupam. Classical electromagnetism in a nutshell (em inglês), página 564 (Princeton university press, 2012).